The bow shock is the first boundary the solar wind encounters as it approaches planets or comets. The Rosetta spacecraft was able to observe the formation of a bow shock by following comet 67P/Churyumov–Gerasimenko toward the Sun, through perihelion, and back outward again. The spacecraft crossed the newly formed bow shock several times during two periods a few months before and after perihelion; it observed an increase in magnetic field magnitude and oscillation amplitude, electron and proton heating at the shock, and the diminution of the solar wind further downstream. Rosetta observed a cometary bow shock in its infancy, a stage in its development not previously accessible to in situ measurements at comets and planets.
As Rosetta was orbiting comet 67P/Churyumov‐Gerasimenko, the Ion and Electron Sensor detected negative particles with angular distributions like those of the concurrently measured solar wind protons but with fluxes of only about 10% of the proton fluxes and energies of about 90% of the proton energies. Using well‐known cross sections and energy‐loss data, it is determined that the fluxes and energies of the negative particles are consistent with the production of H− ions in the solar wind by double charge exchange with molecules in the coma.
We present cross‐scale magnetospheric observations of the 17 March 2015 (St. Patrick's Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide‐angle Imaging Neutral‐atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0.7 RE. Van Allen Probes crossed the plasmapause 13 times; test particle simulations reproduce these encounters within 0.5 RE. Before the storm, Van Allen Probes measured quiet double‐nose proton spectra in the region of corotating cold plasma. About 15 min after a 0605 UT dayside southward turning, Van Allen Probes captured the onset of inner magnetospheric convection, as a density decrease at the moving corotation‐convection boundary (CCB) and a steep increase in ring current (RC) proton flux. During the first several hours of the storm, Van Allen Probes measured highly dynamic ion signatures (numerous injections and multiple spectral peaks). Sustained convection after ∼1200 UT initiated a major buildup of the midnight‐sector ring current (measured by RBSP A), with much weaker duskside fluxes (measured by RBSP B, THEMIS a and THEMIS d). A close conjunction of THEMIS d, RBSP A, and TWINS 1 at 1631 UT shows good three‐way agreement in the shapes of two‐peak spectra from the center of the partial RC. A midstorm injection, observed by Van Allen Probes and TWINS at 1740 UT, brought in fresh ions with lower average energies (leading to globally less energetic spectra in precipitating ions) but increased the total pressure. The cross‐scale measurements of 17 March 2015 contain significant spatial, spectral, and temporal structure.
We formulate the first analytical model for energetic neutral atom (ENA) emissivity that partially corrects for the global viewing geometry dependence of low‐altitude emissions (LAEs) observed by Two Wide‐angle Imaging Neutral‐atom Spectrometers (TWINS). The emissivity correction requires the pitch angle distribution (PAD) and geophysical location of low‐altitude ENAs. To estimate PAD, we create an energy‐dependent analytical model, based on a Monte Carlo simulation. We account for energy binning by integrating model PAD over each energy bin. We account for finite angular pixels by computing emissivity as an integral over the pitch angle range sampled by the pixel. We investigate location uncertainty in TWINS pixels by performing nine variations of the emissivity calculation. Using TWINS 2 ENA imaging data from 1131 to 1145 UT on 6 April 2010, we derive emissivity‐corrected ion fluxes for two angular pixel sizes: 4° and 1°. To evaluate the method, we compare TWINS‐derived ion fluxes to simultaneous in situ data from the National Oceanic and Atmospheric Administration (NOAA) 17 satellite. The TWINS‐NOAA agreement for emissivity‐corrected flux is improved by up to a factor of 7, compared to uncorrected flux. The highest 1° pixel fluxes are a factor of 2 higher than for 4° pixels, consistent with pixel‐derived fluxes that are artificially low because subpixel structures are smoothed out, and indicating a possible slight advantage to oversampling the instrument‐measured LAE signal. Both TWINS and NOAA ion fluxes decrease westward of 2000 magnetic local time. The TWINS‐NOAA comparison indicates that the global ion precipitation oval comprises multiple smaller‐scale (3–5° of latitude) structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.