Many neurodegenerative and neurological diseases are rooted in dysfunction of the neuroimmune system; therefore, manipulating this system has strong therapeutic potential. Prior work has shown that exposing mice to flickering lights at 40 Hz drives gamma frequency (ϳ40 Hz) neural activity and recruits microglia, the primary immune cells of the brain, revealing a novel method to manipulate the neuroimmune system. However, the biochemical signaling mechanisms between 40 Hz neural activity and immune recruitment remain unknown. Here, we exposed wild-type male mice to 5-60 min of 40 Hz or control flicker and assessed cytokine and phosphoprotein networks known to play a role in immune function. We found that 40 Hz flicker leads to increases in the expression of cytokines which promote microglial phagocytic states, such as IL-6 and IL-4, and increased expression of microglial chemokines, such as macrophagecolony-stimulating factor and monokine induced by interferon-␥. Interestingly, cytokine effects differed as a function of stimulation frequency, revealing a range of neuroimmune effects of stimulation. To identify possible mechanisms underlying cytokine expression, we quantified the effect of the flicker on intracellular signaling pathways known to regulate cytokine levels. We found that a 40 Hz flicker upregulates phospho-signaling within the nuclear factor-light-chain-enhancer of activated B cells (NF-B) and mitogen-activated protein kinase (MAPK) pathways. While cytokine expression increased after 1 h of 40 Hz flicker stimulation, protein phosphorylation in the NF-B pathway was upregulated within minutes. Importantly, the cytokine expression profile induced by 40 Hz flicker was different from cytokine changes in response to acute neuroinflammation induced by lipopolysaccharides. These results are the first, to our knowledge, to show how visual stimulation rapidly induces critical neuroimmune signaling in healthy animals.
More than 60% of children and adolescents are exposed to traumatic events, and many develop PTSD. There is increasing recognition of gender differences in PTSD, with women having double the rates of the disorder compared to men. These gender differences in symptoms and their underlying neurobiology appear to emerge during adolescence, although it is still unclear which biological mechanisms may play key roles in the development of sex difference. The literature on gender effects in children and adolescents is still in the early stages, and more prospective and longitudinal work is needed; however, estrogen appears to play a key role in increasing risk for PTSD in girls, which emerges in adolescence.
The future of medicine lies not primarily in cures but in disease modification and prevention. While the science of preclinical detection is young, it is moving rapidly. Preclinical interventions offer hope to decrease the severity of a disease or delay the development of a disorder. With such promise, the research and practice of detecting brain disorders at a preclinical stage present unique ethical challenges that must be addressed to ensure the benefit of these technologies. Direct brain interventions have the potential to impact not just what a patient has but who they are and who they could become. Further, receiving an assessment for a preclinical or prodromal state has potential to impact perceptions about capacity, autonomy and personhood and could become entangled with stigma and discrimination. Exploring ethical issues alongside and integrated into the experimental design and research of these technologies is critical. This review will highlight ethical issues attendant to the current and near future states of preclinical detection across the life span, specifically as it relates to autism spectrum disorder (ASD), schizophrenia, and Alzheimer’s disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.