In TAU58/2 mice, early tau pathology induces functional deficits of neurones associated with NF pathology. This appears to be specific to tau, as similar changes are observed in FTLD-tau, but not in FTLD with TDP-43 inclusions. Therefore, TAU58/2 mice recapitulate aspects of human FTLD-tau and AD pathology, and will become instrumental in studying disease mechanisms and therapeutics in the future.
Mitogen-activated protein (MAP) kinases are a central component in signaling networks in a multitude of mammalian cell types. This review covers recent advances on specific functions of p38 MAP kinases in cells of the central nervous system. Unique and specific functions of the four mammalian p38 kinases are found in all major cell types in the brain. Mechanisms of p38 activation and downstream phosphorylation substrates in these different contexts are outlined and how they contribute to functions of p38 in physiological and under disease conditions. Results in different model organisms demonstrated that p38 kinases are involved in cognitive functions, including functions related to anxiety, addiction behavior, neurotoxicity, neurodegeneration, and decision making. Finally, the role of p38 kinases in psychiatric and neurological conditions and the current progress on therapeutic inhibitors targeting p38 kinases are covered and implicate p38 kinases in a multitude of CNS-related physiological and disease states.
Modulation of behavioural responses by neuronal signalling pathways remains incompletely understood. Signalling via mitogen-activated protein (MAP) kinase cascades regulates multiple neuronal functions. Here, we show that neuronal p38α, a MAP kinase of the p38 kinase family, has a critical and specific role in modulating anxiety-related behaviour in mice. Neuron-specific p38α-knockout mice show increased levels of anxiety in behaviour tests, yet no other behavioural, cognitive or motor deficits. Using CRISPR-mediated deletion of p38α in cells, we show that p38α inhibits c-Jun N-terminal kinase (JNK) activity, a function that is specific to p38α over other p38 kinases. Consistently, brains of neuron-specific p38α-knockout mice show increased JNK activity. Inhibiting JNK using a specific blood-brain barrier-permeable inhibitor reduces JNK activity in brains of p38α-knockout mice to physiological levels and reverts anxiety behaviour. Thus, our results suggest that neuronal p38α negatively regulates JNK activity that is required for specific modulation of anxiety-related behaviour.
Compared with other mammalian species, humans are particularly susceptible to taumediated neurodegenerative disorders. Differential interactions of the tau protein with other proteins are critical for mediating tau's physiological functions as well as tauassociated pathological processes. Primate tau harbors an 11-amino-acid-long motif in its Nterminal region (residues 18-28), which is not present in non-primate species and whose function is unknown. Here, we used deletion mutagenesis to remove this sequence region from the longest human tau isoform, followed by glutathione-S transferase (GST) pulldown assays paired with isobaric tags for relative and absolute quantitation (iTRAQ) multiplex labeling, a quantitative method to measure protein abundance by mass spectrometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.