High-fidelity DNA synthesis conditions are those that exploit the inherent ability of polymerases to discriminate against errors. This review has described several experimental approaches for controlling the fidelity of enzymatic DNA amplification. One of the most important parameters to consider is the choice of which polymerase to use in PCR. As demonstrated by the data in Tables 2 and 3, high-fidelity DNA amplification will be best achieved by using a polymerase with an active 3'-->5' proofreading exonuclease activity (Fig. 1E). For those enzymes that are proofreading-deficient, the in vitro reaction conditions can significantly influence the polymerase error rates. To maximize fidelity at the dNTP insertion step (Fig. 1A,B), any type of deoxynucleoside triphosphate pool imbalance should be avoided. Similarly, stabilization of errors by polymerase extension from mispaired or misaligned primer-termini (Fig. 1D) can be minimized by reactions using short synthesis times, low dNTP concentrations, and low enzyme concentrations. Additional improvements in fidelity can be made by further manipulating the reaction conditions. To perform high-fidelity PCR with Taq polymerase, reactions should contain a low MgCl2 concentration, not in large excess over the total concentration of dNTP substrates, and be buffered to approximately pH 6 (70 degrees C) using Bis-Tris Propane or PIPES (Table 2). These buffers have a pKa between pH 6 and pH 7 and a small temperature coefficient (delta pKa/degree C), allowing the pH to be maintained stably throughout the PCR cycle. For amplifications in which fidelity is the critical issue, one should avoid the concept that conditions generating more DNA product are the better conditions.(ABSTRACT TRUNCATED AT 250 WORDS)
We demonstrate that despite lacking a 3'----5' proofreading exonuclease, the Thermus aquaticus (Taq) DNA polymerase can catalyze highly accurate DNA synthesis in vitro. Under defined reaction conditions, the error rate per nucleotide polymerized at 70 degrees C can be as low as 10(-5) for base substitution errors and 10(-6) for frameshift errors. The frequency of mutations produced during a single round of DNA synthesis of the lac Z alpha gene by Taq polymerase responds to changes in dNTP concentration, pH, and the concentration of MgCl2 relative to the total concentration of deoxynucleotide triphosphates present in the reaction. Both base substitution and frameshift error rates of less than 1/100,000 were observed at pH 5-6 (70 degrees C) or when MgCl2 and deoxynucleotide triphosphates were present at equimolar concentrations. These high fidelity reaction conditions for DNA synthesis by the Taq polymerase may be useful for specialized uses of DNA amplified by the polymerase chain reaction.
Pol η–dependent DNA synthesis at stalled replication forks during S phase suppresses chronic fragile site instability by preventing checkpoint-blind under-replicated DNA in mitosis.
PrimPol is a recently identified polymerase involved in eukaryotic DNA damage tolerance, employed in both re-priming and translesion synthesis mechanisms to bypass nuclear and mitochondrial DNA lesions. In this report, we investigate how the enzymatic activities of human PrimPol are regulated. We show that, unlike other TLS polymerases, PrimPol is not stimulated by PCNA and does not interact with it in vivo. We identify that PrimPol interacts with both of the major single-strand binding proteins, RPA and mtSSB in vivo. Using NMR spectroscopy, we characterize the domains responsible for the PrimPol-RPA interaction, revealing that PrimPol binds directly to the N-terminal domain of RPA70. In contrast to the established role of SSBs in stimulating replicative polymerases, we find that SSBs significantly limit the primase and polymerase activities of PrimPol. To identify the requirement for this regulation, we employed two forward mutation assays to characterize PrimPol's replication fidelity. We find that PrimPol is a mutagenic polymerase, with a unique error specificity that is highly biased towards insertion-deletion errors. Given the error-prone disposition of PrimPol, we propose a mechanism whereby SSBs greatly restrict the contribution of this enzyme to DNA replication at stalled forks, thus reducing the mutagenic potential of PrimPol during genome replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.