SummaryClimate change effects on seasonal activity in terrestrial ecosystems are significant and well documented, especially in the middle and higher latitudes. Temperature is a main driver of many plant developmental processes, and in many cases higher temperatures have been shown to speed up plant development and lead to earlier switching to the next ontogenetic stage. Qualitatively consistent advancement of vegetation activity in spring has been documented using three independent methods, based on ground observations, remote sensing, and analysis of the atmospheric CO 2 signal. However, estimates of the trends for advancement obtained using the same method differ substantially. We propose that a high fraction of this uncertainty is related to the time frame analysed and changes in trends at decadal time scales. Furthermore, the correlation between estimates of the initiation of spring activity derived from ground observations and remote sensing at interannual time scales is often weak. We propose that this is caused by qualitative differences in the traits observed using the two methods, as well as the mixture of different ecosystems and species within the satellite scenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.