Alginate is an industrially widely used polysaccharide produced by brown seaweeds and as an exopolysaccharide by bacteria belonging to the genera Pseudomonas and Azotobacter. The polymer is composed of the two sugar monomers mannuronic acid and guluronic acid (G), and in all these bacteria the genes encoding 12 of the proteins essential for synthesis of the polymer are clustered in the genome. Interestingly, 1 of the 12 proteins is an alginate lyase (AlgL), which is able to degrade the polymer down to short oligouronides. The reason why this lyase is associated with the biosynthetic complex is not clear, but in this paper we show that the complete lack of AlgL activity in Pseudomonas fluorescens in the presence of high levels of alginate synthesis is toxic to the cells. This toxicity increased with the level of alginate synthesis. Furthermore, alginate synthesis became reduced in the absence of AlgL, and the polymers contained much less G residues than in the wild-type polymer. To explain these results and other data previously reported in the literature, we propose that the main biological function of AlgL is to degrade alginates that fail to become exported out of the cell and thereby become stranded in the periplasmic space. At high levels of alginate synthesis in the absence of AlgL, such stranded polymers may accumulate in the periplasm to such an extent that the integrity of the cell is lost, leading to the observed toxic effects.
The majority of microorganisms in natural environments are difficult to cultivate, but their genes can be studied via metagenome libraries. To enhance the chances that these genes become expressed we here report the construction of a broad-host-range plasmid vector (pRS44) for fosmid and bacterial artificial chromosome (BAC) cloning. pRS44 can be efficiently transferred to numerous hosts by conjugation. It replicates in such hosts via the plasmid RK2 origin of replication, while in Escherichia coli it replicates via the plasmid F origin. The vector was found to be remarkably stable due to the insertion of an additional stability element (parDE). The copy number of pRS44 is adjustable, allowing for easy modifications of gene expression levels. A fosmid metagenomic library consisting of 20 000 clones and BAC clones with insert sizes up to 200 kb were constructed. The 16S rRNA gene analysis of the fosmid library DNA confirmed that it represents a variety of microbial species. The entire fosmid library and the selected BAC clones were transferred to Pseudomonas fluorescens and Xanthomonas campestris (fosmids only), and heterologous proteins from the fosmid library were confirmed to be expressed in P. fluorescens. To our knowledge no other reported vector system has a comparable potential for functional screening across species barriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.