The reaction of triphenylphosphine or N-butylimidazole with cyclic sultones gives zwitterions that are subsequently converted into ionic liquids by reaction with trifluoromethane sulfonic acid or p-toluenesulfonic acid. The resulting ionic liquids have cations to which are tethered alkane sulfonic acid groups. These Brønsted acidic ionic liquids are useful solvent/catalysts for several organic reactions, including Fischer esterification, alcohol dehydrodimerization and the pinacol rearrangement. The new ionic liquids combine the low volatility and ease of separation from product normally associated with solid acid catalysts, with the higher activity and yields normally found using conventional liquid acids.
Serotonin (5-HT) plays a key role in early brain development, and manipulation of 5-HT levels during this period can have lasting neurobiological and behavioral consequences. It is unclear how perinatal exposure to drugs, such as selective serotonin reuptake inhibitors (SSRIs), impacts cortical neural network function and what mechanism(s) may elicit the disruption of normal neuronal connections/interactions. In this article, we report on cortical wiring organization after pre-and postnatal exposure to the SSRI citalopram. We show that manipulation of 5-HT during early development in both in vitro and in vivo models disturbs characteristic chemoarchitectural and electrophysiological brain features, including changes in raphe and callosal connections, sensory processing, and myelin sheath formation. Also, drug-exposed rat pups exhibit neophobia and disrupted juvenile play behavior. These findings indicate that 5-HT homeostasis is required for proper brain maturation and that fetal/infant exposure to SSRIs should be examined in humans, particularly those with developmental dysfunction, such as autism.S erotonin (5-HT) has long been postulated to play a trophic role in brain morphogenesis, including cell proliferation, migration, and differentiation. It is also known to be one of the first neurotransmitters to appear in the central nervous system (1, 2). An obvious question that can be raised relates to whether perinatal exposure to antidepressants, such as selective serotonin reuptake inhibitors (SSRIs), can affect cortical circuit development and function. Perhaps one of the most intriguing previous findings related to 5-HT and early cortical organization was the observation from immunohistochemical and 5-HT transporter (SERT) binding studies that, at postnatal days 2-14 (P2-P14), rodent primary sensory cortex (notably layer IV of visual, auditory, and somatosensory areas) is transiently innervated by aggregates of fine grainlooking 5-HT-containing processes (3)(4)(5). Surprisingly, it became clear that, in early brain development, 5-HT is taken up into glutamatergic thalamocortical terminals (6, 7) and used in combination with the 5-HT 1B receptor on layer IV afferents (8). At present, the functional implication of such transient 5-HT expression and targeting, namely the primary sensory thalamocortical afferents during early development, remains unknown.5-HT and Abnormal Brain Development. Interestingly, manipulations of rodent brain 5-HT levels during early development, either through increases (produced in SERT or monoamine oxidase knockout mice) or decreases (produced by parachlorophenylalanine or other treatments), have been shown to produce the downstream effect of interfering with the formation of the whisker (barrel) representation in the primary somatosensory cortex and promoting aggressive and/or anxiety-related behaviors (9-14). Furthermore, early-life modification of 5-HT levels has been shown to cause overreaction to auditory or tactile sensory stimulation (15) and abnormal response properties of cor...
Infants born to mothers taking selective serotonin reuptake inhibitors (SSRIs) late in pregnancy have been reported to exhibit signs of antidepressant withdrawal. Such evidence suggests that these drugs access the fetal brain in utero at biologically significant levels. Recent studies in rodents have revealed that early exposure to antidepressants can lead to long lasting abnormalities in adult behaviors, and result in robust decreases in the expression of a major serotonin synthetic enzyme (tryptophan hydroxylase) along the raphe midline. In the present investigation, we injected rat pups with citalopram (CTM: 5 mg/kg, 10 mg/kg, and 20 mg/kg) from postnatal Days 8-21, and examined serotonin transporter (SERT) labeling in the hippocampus, ventrobasal thalamic complex, and caudate-putamen when the subjects reached adulthood. Our data support the idea, that forebrain targets in receipt of innervation from the raphe midline are particularly vulnerable to the effects of CTM. SERT-immunoreactive fiber density was preferentially decreased throughout all sectors of the hippocampal formation, whereas the subcortical structures, each supplied by more lateral and rostral aspects of the raphe complex, respectively, were not significantly affected. Reductions in SERT staining were also found to be dose-dependent. These findings suggest that SSRIs may not only interfere with the establishment of chemically balanced circuits in the neonate but also impose selective impairment on higher cortical function and cognitive processes via more circumscribed (i.e., regionally specific) deficits in 5-HT action. Anat Rec, 293:1920Rec, 293: -1932
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.