The Municipality of Asker (Norway) is at risk of not meeting the water quality targets set by the European Union Water Framework Directive within the stipulated timeframe. While there are multiple factors negatively impacting water quality in the municipality, wastewater is likely to be a major contributor. Infiltration and inflow water (I/I-water) leads to a number of unwanted consequences, of which direct discharge of untreated wastewater through overflow points is particularly important. In Aker municipality the portion of I/I-water is about 63%, while the goal is to achieve a level of about 30. This study utilises a socio-economic cost-effectiveness analysis of measures to prevent sewer overflows into waterbodies. The most effective alternative identified in the analysis is a complete renovation of old pipes in combination with troubleshooting for fault connected stormwater, when compared to alternatives considering upsizing/retention. I/I-water did cost the municipality of Asker NOK 34 million in 2017, when using a price of NOK 16,434 Tot-P for each kg of Tot-P let into the recipients. If the phosphorus cost is equal to or lesser than NOK 17,806/kg Tot-P, then it will not be socioeconomically justified to reduce I/I-water.
Infiltration and inflow of non-sewer water to the wastewater network (I/I-water) may have a number of both financial and environmental consequences. In Norway, there are two commonly used methods for calculating the volume of I/I-water, The Dilution method (DM) and the Water Balance Method (WBM). When comparing the methods, the WBM gives a lower value of I/I-water than the DM. Analysis shows that the volume of I/I-water for some large Norwegian wastewater plants is decreasing. From 2009 to 2016, the average value has decreased from 70% to 66% of the total annual flow. For investigated Danish districts the average amount of I/I-water is stable, on about 30%. Calculations performed by the Finnish Water Utilities Association shows a stable percentage of I/I-water on about 40% in Finland from 2010 to 2016. Calculations on Swedish wastewater plants show a reduction in I/I-water from 58% to 46% from 2010 to 2016. For the districts Asker, Bærum, and Drammen in Norway, the amount of I/I-water is increasing with increasing percentage of combined sewer systems. This is also the case for investigated plants in Norway, Sweden, and Finland. The exception is Denmark, with a high percentage of combined systems, but a low percentage of I/I-water. Investigations done for Asker, Bærum, Drammen, and the two Danish districts Randers and Esbjerg vest, show a correlation between rainfall and I/I-water only for Asker and Esbjerg vest.
Infiltration and inflow water (I/I-water) is a big challenge in sewage systems in many countries. I/I-water above an acceptable level indicates that the sewage system is not functioning properly. I/I-water leads to increased pumping costs and increased sewage overflow, leading to increased pollution of the receiving waters. Many rehabilitation projects are driven by the need to reduce the share of I/I-water and common measures are to replace pipes and manholes. The share of I/I-water is predominantly driven by rainfall. This makes it difficult to document the efficiency of mitigating measures. One way to address this issue is to compare data from rehabilitation areas to areas where no measures have been implemented. Three rehabilitation areas in Asker Municipality, Norway, were successfully assessed by applying this approach. Asker has a 100% separate system. The strategy to reduce I/I-water in Asker Municipality was to rehabilitate sewage mains, either by full replacement or lining the old pipes, and replacement of manholes. The assessment shows that rehabilitation of selected municipal pipes, pipes proven to be in bad condition through closed circuit TV inspection, reduced the share of I/I-water only to a limited extent. Since the rehabilitation done was not a complete replacement of all pipes and manholes, the limited effects are assumed to be caused by the water finding other ways into the system. In separate systems other measures than renovations of pipes should be considered when aiming to reduce I/I-water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.