Spiders spin high-performance silks through the expression and assembly of tissue-restricted fibroin proteins. Spider silks are composite protein biopolymers that have complex microstructures. Retrieval of cDNAs and genomic DNAs encoding silk fibroins has revealed an association between the protein sequences and structure-property relationships. However, before spider silks can be subject to genetic engineering for commercial applications, the complete protein sequences and their functions, as well as the details of the spinning mechanism, will require additional progress and collaborative efforts in the areas of biochemistry, molecular biology and material science. Novel approaches to reveal additional molecular constituents embedded in the spider fibers, as well as cloning strategies to manipulate the genes for expression, will continue to be important aspects of spider biology research. Here we summarize the molecular characteristics of the different spider fibroins, the mechanical properties and assembly process of spidroins and the advances in protein expression systems used for recombinant silk production. We also highlight different technical approaches being used to elucidate the molecular constituents of silk fibers.
Araneoid spiders use specialized abdominal glands to manufacture up to seven different protein-based silks/glues that have diverse physical properties. The fibroin sequences that encode egg case fibers (cover silk for the egg case sac) and the secondary structure of these threads have not been previously determined. In this study, MALDI tandem TOF mass spectrometry (MS/MS) and reverse genetics were used to isolate the first egg case fibroin, named tubuliform spidroin 1 (TuSp1), from the black widow spider, Latrodectus hesperus. Real-time quantitative PCR analysis demonstrates TuSp1 is selectively expressed in the tubuliform gland. Analysis of the amino acid composition of raw egg case silk closely aligns with the predicted amino acid composition from the primary sequence of TuSp1, which supports the assertion that TuSp1 represents a major component of egg case fibers. TuSp1 is composed of highly homogeneous repeats that are 184 amino acids in length. The long stretches of polyalanine and glycine-alanine subrepeats, which account for the crystalline regions of minor ampullate and major ampullate fibers, are very poorly represented in TuSp1. However, polyserine blocks and short polyalanine stretches were highly iterated within the primary sequence, and (13)C NMR spectroscopy demonstrated that the majority of alanine was found in a beta-sheet structure in post-spun egg case silk. The TuSp1 repeat unit does not display substantial sequence similarity to any previously described fibroin genes or proteins, suggesting that TuSp1 is a highly divergent member of the spider silk gene family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.