Background Large-scale school closures have been implemented worldwide to curb the spread of COVID-19. However, the impact of school closures and re-opening on epidemic dynamics remains unclear. Methods We simulated COVID-19 transmission dynamics using an individual-based stochastic model, incorporating social-contact data of school-aged children during shelter-in-place orders derived from Bay Area (California) household surveys. We simulated transmission under observed conditions and counterfactual intervention scenarios between March 17-June 1, and evaluated various fall 2020 K-12 reopening strategies. Findings Between March 17-June 1, assuming children <10 were half as susceptible to infection as older children and adults, we estimated school closures averted a similar number of infections (13,842 cases; 95% CI: 6,290, 23,040) as workplace closures (15,813; 95% CI: 9,963, 22,617) and social distancing measures (7,030; 95% CI: 3,118, 11,676). School closure effects were driven by high school and middle school closures. Under assumptions of moderate community transmission, we estimate that fall 2020 school reopenings will increase symptomatic illness among high school teachers (an additional 40.7% expected to experience symptomatic infection, 95% CI: 1.9, 61.1), middle school teachers (37.2%, 95% CI: 4.6, 58.1), and elementary school teachers (4.1%, 95% CI: -1.7, 12.0). Results are highly dependent on uncertain parameters, notably the relative susceptibility and infectiousness of children, and extent of community transmission amid re-opening. The school-based interventions needed to reduce the risk to fewer than an additional 1% of teachers infected varies by grade level. A hybrid-learning approach with halved class sizes of 10 students may be needed in high schools, while maintaining small cohorts of 20 students may be needed for elementary schools. Interpretation Multiple in-school intervention strategies and community transmission reductions, beyond the extent achieved to date, will be necessary to avoid undue excess risk associated with school reopening. Policymakers must urgently enact policies that curb community transmission and implement within-school control measures to simultaneously address the tandem health crises posed by COVID-19 and adverse child health and development consequences of long-term school closures.
Importance: Evidence is needed to determine COVID-19 vaccine effectiveness under real world conditions of use. Objective: To determine the effectiveness of authorized vaccines against COVID-19 in the context of substantial circulation of SARS-CoV-2 variants of concern, and identify vaccine uptake barriers. Design: We recruited cases (testing positive) and controls (testing negative) based on SARS-CoV-2 molecular diagnostic test results from 24 February-7 April 2021. Controls were individually matched to cases by age, sex, and geographic region. We identified cases and controls via random sampling within predetermined demographic strata. We conducted enrollment and administered study questionnaires via telephone-based facilitated interviews. Setting: Population-based surveillance of all SARS-CoV-2 molecular diagnostic testing reported to the California Department of Public Health. During the study period, 69% of sequenced SARS-CoV-2 isolates in California belonged to variants of concern B.1.1.7, B.1.427, or B.1.429. Participants: We enrolled 645 adults aged ≥18y, including 325 cases and 320 controls Exposures: We assessed participants' self-reported history of COVID-19 vaccine receipt (BNT162b2 and mRNA-1273). Individuals were considered fully vaccinated two weeks after second dose receipt. Main Outcomes and Measures: The primary endpoint was a positive SARS-CoV-2 molecular test result. For unvaccinated participants, we assessed willingness to receive vaccination, when eligible. We measured vaccine effectiveness via the matched odds ratio of prior vaccination, comparing cases with controls. Results: Among 325 cases, 23 (7%) and 13 (4%) received BNT162b2 and mRNA-1273, respectively; 8 (2%) were fully vaccinated with either product. Among 260 controls, 49 (19%) and 49 (19%) received BNT162b2 and mRNA-1273, respectively; 42 (16%) were fully vaccinated with either product. Among fully vaccinated individuals, vaccine effectiveness was 86% (95% confidence interval: 67-94%). Vaccine effectiveness was 66% (-69% to 93%) and 78% (23% to 94%) one week following a first and second dose, respectively. Among unvaccinated participants, 39% of those residing in rural regions and 23% of those residing in urban regions reported hesitancy to receive COVID-19 vaccines, when eligible. In contrast, vaccine hesitancy did not significantly differ by age, sex, household income, or race/ethnicity. Conclusions and Relevance: Ongoing vaccination efforts are preventing SARS-CoV-2 infection in the general population in California. Vaccine hesitancy presents a barrier to reaching coverage levels needed for herd immunity.
Background Estimates of COVID-19 vaccine effectiveness under real-world conditions, and understanding of barriers to uptake, are necessary to inform vaccine rollout. Methods We enrolled cases (testing positive) and controls (testing negative) from among the population whose SARS-CoV-2 molecular diagnostic test results from 24 February-29 April 2021 were reported to the California Department of Public Health. Participants were matched on age, sex, and geographic region. We assessed participants’ self-reported history of mRNA-based COVID-19 vaccine receipt (BNT162b2 and mRNA-1273). Participants were considered fully vaccinated two weeks after second dose receipt. Among unvaccinated participants, we assessed willingness to receive vaccination. We measured vaccine effectiveness (VE) via the matched odds ratio of prior vaccination, comparing cases with controls. Results We enrolled 1023 eligible participants aged ≥18 years. Among 525 cases, 71 (13.5%) received BNT162b2 or mRNA-1273; 20 (3.8%) were fully vaccinated with either product. Among 498 controls, 185 (37.1%) received BNT162b2 or mRNA-1273; 86 (16.3%) were fully vaccinated with either product. Two weeks after second dose receipt, VE was 87.0% (95% confidence interval: 68.6-94.6%) and 86.2% (68.4-93.9%) for BNT162b2 and mRNA-1273, respectively. Fully vaccinated participants receiving either product experienced 91.3% (79.3-96.3%) and 68.3% (27.9-85.7%) VE against symptomatic and asymptomatic infection, respectively. Among unvaccinated participants, 42.4% (159/375) residing in rural regions and 23.8% (67/281) residing in urban regions reported hesitancy to receive COVID-19 vaccination. Conclusions Authorized mRNA-based vaccines are effective at reducing documented SARS-CoV-2 infections within the general population of California. Vaccine hesitancy presents a barrier to reaching coverage levels needed for herd immunity.
During the ongoing coronavirus disease (COVID-19) pandemic, farmworkers in the United States are considered essential personnel and continue in-person work. We conducted prospective surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and antibody prevalence among farmworkers in Salinas Valley, California, during June 15–November 30, 2020. We observed 22.1% (1,514/6,864) positivity for SARS-CoV-2 infection among farmworkers compared with 17.2% (1,255/7,305) among other adults from the same communities (risk ratio 1.29, 95% CI 1.20–1.37). In a nested study enrolling 1,115 farmworkers, prevalence of current infection was 27.7% among farmworkers reporting > 1 COVID-19 symptom and 7.2% among farmworkers without symptoms (adjusted odds ratio 4.16, 95% CI 2.85–6.06). Prevalence of SARS-CoV-2 antibodies increased from 10.5% (95% CI 6.0%–18.4%) during July 16–August 31 to 21.2% (95% CI 16.6%–27.4%) during November 1–30. High SARS-CoV-2 infection prevalence among farmworkers underscores the need for vaccination and other preventive interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.