Motor neurons are matched to their target muscles, often forming separate phasic and tonic systems as in the abdomen of crayfish where they are used for rapid escape and slow postural movements, respectively. To assess the role of motor neuron and muscle fiber in forming synapses we attempted a mismatch experiment by allotransplanting a phasic nerve attached to its ganglion to a denervated tonic muscle. Regenerating motor axons sprouted 10-30 branches (typical of phasic motor neurons, as tonic ones sprout far fewer branches) to reinnervate muscle fibers and form synapses that produced large excitatory postsynaptic potentials (typical of phasic motor neurons, as tonic synapses give small potentials). Therefore motor neurons, not muscle fibers, appear to specify one of the major properties of regenerating neuromuscular synapses.
Transplantation of whole ganglia was used to study the regeneration of four of the neurons that innervate the superficial flexor muscles of the crayfish Procambarus clarkii. The isolated ganglia containing the somas of these neurons were successfully transplanted from one crayfish to another. Reinnervation proceeded across the muscle surface and by 8 to 10 weeks connections were detected across the entire target field. At different time periods after the transplant, junction potentials (JPs) produced in phase with spontaneous neuronal spikes were recorded. The distribution of JP sizes and their decay times were examined. JPs from transplanted preparations were smaller than JPs from control or normal regeneration animals. These JPs also failed to facilitate when stimulated at 1 and 10 Hz. These are normal characteristics of immature terminals, but in the transplant preparations, once established, they remained stable for the duration of the study. Thus, synaptogenesis appears to be arrested at a stage before synaptic efficacy is established in the allotransplants. In addition, connectivity maps were plotted for each axon over the muscle surface. Some muscle fibers did not receive any contacts, and overall innervation leveled off at around 60% of the muscle fibers, remaining stable for the duration of this study. Despite the incomplete physiological innervation, however, three of the four neurons showed the same medial/lateral preferences observed in control animals, regenerating their original patterns of connectivity across the muscle surface.
Single discrete muscle fibers were found in regenerating motor nerves in adult crayfish. The regenerating nerves were from native or transplanted ganglia in the third abdominal segments and consisted of several motor axons. The proximal end of these motor axons showed numerous sprouts. Muscle fibers in these regenerating nerves appeared newly developed and were innervated by excitatory nerve terminals. A likely source of these novel muscle fibers may be blood cells in the nerve or satellite cells from neighboring muscle. Contacts made by axon sprouts with other axon sprouts, glia, and muscle fiber, in the form of a dense bar with clustered clear vesicles, characterized the regenerating nerve. These contacts may provide a possible signaling pathway for axon regeneration and myogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.