Fatty liver syndrome (FLS) is a common disease in high-producing dairy cows. Studies in humans suggest that the different hepatic lipid fractions play a role in this context. In dairy cows, little is known about the composition of fat stored in the liver, its periparturient dynamics, and the effect of cows' age. Therefore, our goal was to generate primary data in healthy cows to serve as reference values for future studies. Eight healthy German Holstein cows (2nd lactation, n = 3; ≥3rd lactation, n = 5) were examined 14 d antepartum and 7, 28, and 42 d postpartum. The examinations included clinical assessment, liver biopsy, blood sampling, and recording of milk yield. Total lipids (TL) in liver tissue were measured gravimetrically. The TL were separated into lipid fractions (triacylglycerol, TAG; phospholipids, PL; non-esterified fatty acids, NEFA; and cholesterol esters) using thin-layer chromatography, followed by gas chromatography for fatty acid determination. Concentrations of NEFA, ß-hydroxybutyrate, and cholesterol were analyzed in blood. Concentrations of TL, TAG, NEFA, and cholesterol esters in liver tissue and NEFA in blood increased in the periparturient period. The older cows had higher hepatic TL, TAG, and PL concentrations, higher relative hepatic concentrations of TAG in TL, higher NEFA concentrations in blood, a greater decrease in body condition, and higher milk yields between d 9 and 40 than the younger cows. We proposed that due to higher milk yield, older cows mobilized and deposited more fat in the liver, and the increase in hepatic TAG concentration was longer-lasting than in younger cows. Higher levels of structural lipids (PL) in older cows could be explained by higher demand for storage of TAG and cholesterol esters in lipid droplets or for the export of TAG via very-low-density lipoproteins. Results show that hepatic fat storage is a reversible process and does not necessarily cause clinical disease. Nevertheless, older cows have a more sustained and greater increase in hepatic TAG concentration, which may explain their increased risk of FLS. The results are limited in their extrapolation due to the small sample size and thereby possible selection bias but present a valuable basis for future studies.
Hepatosteatosis is a common metabolic disorder of dairy cows, especially during early lactation. Currently, there are a few models of bovine hepatic steatosis available, including primary hepatocytes, liver slices, and animal models. Studies that elucidate the influence of single fatty acids on lipid classes, fatty acid pattern, gene expression, and phenotypic changes are still limited. Hence, we investigated the suitability of the fetal bovine hepatocyte-derived cell line BFH12 as a model for hepatosteatosis. To create a steatotic environment, we treated BFH12 with stearic acid, palmitic acid, or oleic acid in non-toxic doses. Thin-layer chromatography and gas chromatography were used to analyze lipid classes and fatty acid pattern, and qPCR was used to quantify gene expression of relevant target genes. Lipid droplets were visualized with confocal laser scanning microscopy and evaluated for number and size. Treatment with oleic acid increased triglycerides, as well as lipid droplet count per cell and upregulated carnitine palmitoyl transferase 1, which correlates with findings of in vivo models. Oleic acid was largely incorporated into triglycerides, phospholipids, and non-esterified fatty acids. Stearic acid was found mainly in non-esterified fatty acids and triglycerides, whereas palmitic acid was mainly desaturated to palmitoleic acid. All three fatty acids downregulated stearyl-CoA-desaturase 1. In conclusion, BFH12 can acquire a steatotic phenotype by incorporating and accumulating fatty acids. Oleic acid is particularly suitable to produce hepatosteatosis. Therefore, BFH12 may be a useful in vitro model to study bovine hepatosteatosis and its underlying molecular mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.