Tissue sections offer the opportunity to understand a patient's condition, to make better prognostic evaluations and to select optimum treatments, as evidenced by the place pathology holds today in clinical practice. Yet, there is a wealth of information locked up in a tissue section that is only partially accessed, due mainly to the limitations of tools and methods. Often tissues are assessed primarily based on visual analysis of one or two proteins, or 2-3 DNA or RNA molecules. Even while analysis is still based on visual perception, image analysis is starting to address the variability of human perception. This is in contrast to measuring characteristics that are substantially out of reach of human perception, such as parameters revealed through co-expression, spatial relationships, heterogeneity, and low abundance molecules. What is not routinely accessed is the information revealed through simultaneous detection of multiple markers, the spatial relationships among cells and tissue in disease, and the heterogeneity now understood to be critical to developing effective therapeutic strategies. Our purpose here is to review and assess methods for multiplexed, quantitative, image analysis based approaches, using new multicolor immunohistochemistry methods, automated multispectral slide imaging, and advanced trainable pattern recognition software. A key aspect of our approach is presenting imagery in a workflow that engages the pathologist to utilize the strengths of human perception and judgment, while significantly expanding the range of metrics collectable from tissue sections and also provide a level of consistency and precision needed to support the complexities of personalized medicine.
The International Conference on Harmonization (ICH) E5 guidelines were developed to provide a general framework for evaluating the potential impact of ethnic factors on the acceptability of foreign clinical data, with the underlying objective to facilitate global drug development and registration. It is well recognized that all drugs exhibit significant inter-subject variability in pharmacokinetics and pharmacologic response and that such differences vary considerably among individual drugs and depend on a variety of factors. One such potential factor involves ethnicity. The objective of the present work was to perform an extensive review of the world literature on ethnic differences in drug disposition and responsiveness to determine their general significance in relation to drug development and registration. A few examples of suspected ethnic differences in pharmacokinetics or pharmacodynamics were identified. The available literature, however, was found to be heterologous, including a variety of study designs and research methodologies, and most of the publications were on drugs that were approved a long time ago.
Highlights d High rate of NF1 loss in the R0 compared to neoadjuvant chemotherapy (NACT) group d Lower chromothripsis-like pattern and higher neoantigens in the R0 versus NACT group d Increased number of infiltrated T cells and decreased macrophages in the R0 group d Significant transcriptomic and proteomic variations between HGSC subgroups
BackgroundEmerging data suggest predictive biomarkers based on the spatial arrangement of cells or coexpression patterns in tissue sections will play an important role in precision immuno-oncology. Multiplexed immunofluorescence (mIF) is ideally suited to such assessments. Standardization and validation of an end-to-end workflow that supports multisite trials and clinical laboratory processes are vital. Six institutions collaborated to: (1) optimize an automated six-plex assay focused on the PD-1/PD-L1 axis, (2) assess intersite and intrasite reproducibility of staining using a locked down image analysis algorithm to measure tumor cell and immune cell (IC) subset densities, %PD-L1 expression on tumor cells (TCs) and ICs, and PD-1/PD-L1 proximity assessments.MethodsA six-plex mIF panel (PD-L1, PD-1, CD8, CD68, FOXP3, and CK) was rigorously optimized as determined by quantitative equivalence to immunohistochemistry (IHC) chromogenic assays. Serial sections from tonsil and breast carcinoma and non-small cell lung cancer (NSCLC) tissue microarrays (TMAs), TSA-Opal fluorescent detection reagents, and antibodies were distributed to the six sites equipped with a Leica Bond Rx autostainer and a Vectra Polaris multispectral imaging platform. Tissue sections were stained and imaged at each site and delivered to a single site for analysis. Intersite and intrasite reproducibility were assessed by linear fits to plots of cell densities, including %PDL1 expression by TCs and ICs in the breast and NSCLC TMAs.ResultsComparison of the percent positive cells for each marker between mIF and IHC revealed that enhanced amplification in the mIF assay was required to detect low-level expression of PD-1, PD-L1, FoxP3 and CD68. Following optimization, an average equivalence of 90% was achieved between mIF and IHC across all six assay markers. Intersite and intrasite cell density assessments showed an average concordance of R2=0.75 (slope=0.92) and R2=0.88 (slope=0.93) for breast carcinoma, respectively, and an average concordance of R2=0.72 (slope=0.86) and R2=0.81 (slope=0.68) for NSCLC. Intersite concordance for %PD-L1+ICs had an average R2 value of 0.88 and slope of 0.92. Assessments of PD-1/PD-L1 proximity also showed strong concordance (R2=0.82; slope=0.75).ConclusionsAssay optimization yielded highly sensitive, reproducible mIF characterization of the PD-1/PD-L1 axis across multiple sites. High concordance was observed across sites for measures of density of specific IC subsets, measures of coexpression and proximity with single-cell resolution.
Purpose: Tumor-infiltrating lymphocytes (TIL) are associated with benefit to trastuzumab and chemotherapy in patients with early-stage HER2+ breast cancer. The predictive value of TILs, TIL subsets, and other immune cells in patients receiving chemotherapy-sparing lapatinib plus trastuzumab treatment is unclear. Experimental Design: Hematoxylin and eosin–stained slides (n = 59) were used to score stromal (s-)TILs from pretreatment biopsies of patients enrolled in the neoadjuvant TBCRC006 trial of 12-week lapatinib plus trastuzumab therapy (plus endocrine therapy for ER+ tumors). A 60% threshold was used to define lymphocyte-predominant breast cancer (LPBC). Multiplexed immunofluorescence (m-IF) staining (CD4, CD8, CD20, CD68, and FoxP3) and multispectral imaging were performed to characterize immune infiltrates in single formalin-fixed paraffin-embedded slides (n = 33). Results: The pathologic complete response (pCR) rate was numerically higher in patients with LPBC compared with patients with non-LPBC (50% vs. 19%, P = 0.057). Unsupervised hierarchical clustering of the five immune markers identified two patient clusters with different responses to lapatinib plus trastuzumab treatment (pCR = 7% vs. 50%, for cluster 1 vs. 2 respectively; P = 0.01). In multivariable analysis, cluster 2, characterized by high CD4+, CD8+, CD20+ s-TILs, and high CD20+ intratumoral TILs, was independently associated with a higher pCR rate (P = 0.03). Analysis of single immune subpopulations revealed a significant association of pCR with higher baseline infiltration by s-CD4, intratumoral (i-) CD4, and i-CD20+ TILs. Conclusions: LPBC was marginally associated with higher pCR rate than non-LPBC in patients with lapatinib plus trastuzumab treated HER2+ breast cancer. Quantitative assessment of the immune infiltrate by m-IF is feasible and may help correlate individual immune cell subpopulations and immune cell profiles with treatment response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.