Studies of Drosophila and mammals have revealed the importance of insulin signaling through phosphatidylinositol 3-kinase and the serine/threonine kinase Akt/protein kinase B for the regulation of cell, organ, and organismal growth. In mammals, three highly conserved proteins, Akt1, Akt2, and Akt3, comprise the Akt family, of which the first two are required for normal growth and metabolism, respectively. Here we address the function of Akt3. Like Akt1, Akt3 is not required for the maintenance of normal carbohydrate metabolism but is essential for the attainment of normal organ size. However, in contrast to Akt1 ؊/؊ mice, which display a proportional decrease in the sizes of all organs, Akt3 ؊/؊ mice present a selective 20% decrease in brain size. Moreover, although Akt1-and Akt3-deficient brains are reduced in size to approximately the same degree, the absence of Akt1 leads to a reduction in cell number, whereas the lack of Akt3 results in smaller and fewer cells. Finally, mammalian target of rapamycin signaling is attenuated in the brains of Akt3؊/؊ but not Akt1 ؊/؊ mice, suggesting that differential regulation of this pathway contributes to an isoform-specific regulation of cell growth.While complex organisms grow toward determinate final sizes, there must be precise regulation within each tissue as well as coordination among organs to reach these final sizes (18,24). The regulation of both cell number and size contributes to the establishment of organ size, whereas cell number appears to be predominant in determining differences between species. Several factors, including circulating hormones and metabolites as well as cell-autonomous signaling cascades, control these processes (31). One of the key extracellular effectors determining organismal size is insulin-like growth factor 1 (IGF1). As demonstrated by genetic studies with mice, IGF1 is required for normal embryonic and postnatal growth (4,43,44,59). In addition, IGF1 controls the sizes of individual organs (43, 59). For example, normal brain growth requires IGF1 (6, 43), as IGF1-deficient brains are reduced in size secondary to a decrease in both cell number and cell size (6,15). Similarly, humans with IGF1 deficiency display severe growth retardation and suffer from mental retardation (75).In addition to extracellular factors, the intracellular signaling pathways determining growth are being uncovered. IGF1 acts through the type 1 IGF receptor to modulate an evolutionarily conserved pathway of molecules involved in the regulation of growth and metabolism (38,53). For many hormones, including IGF1 and insulin, binding to a receptor stimulates its protein tyrosine kinase activity, leading to the phosphorylation of scaffold proteins of the insulin receptor substrate (IRS) family. IRS proteins assemble complexes that include a number of potential signaling proteins, of which the lipid kinase phosphatidylinositol 3-kinase (PI3K) appears to be the most critical for the maintenance of cell size and proliferation (10). PI3K catalyzes the generation of phospha...
The expression of cyclin D1 in mid-G1 phase is associated with sustained ERK activity, and we show here that Rho is required for the sustained ERK signal. However, we also report that Rho inhibits an alternative Rac/Cdc42-dependent pathway, which results in a strikingly early G1-phase expression of cyclin D1. Thus, cyclin D1 is induced in mid-G1 phase because a Rho switch couples its expression to sustained ERK activity rather than Rac and Cdc42. Our results show that Rho is crucial for maintaining the correct timing of cyclin D1 expression in G1 phase and describe a new role for cytoskeletal integrity in the regulation of cell cycle progression.
Cyclin D1 expression is jointly regulated by growth factors and cell adhesion to the extracellular matrix in many cell types. Growth factors are thought to regulate cyclin D1 expression because they stimulate sustained extracellular signal-regulated kinase (ERK) activity. However, we show here that growth factors induce transient ERK activity when added to suspended fibroblasts and sustained ERK activity only when added to adherent fibroblasts. Cell attachment to fibronectin or anti-alpha5beta1 integrin is sufficient to sustain the ERK signal and to induce cyclin D1 in growth factor-treated cells. Moreover, when we force the sustained activation of ERK, by conditional expression of a constitutively active MAP kinase/ERK kinase, we overcome the adhesion requirement for expression of cyclin D1. Thus, at least in part, fibroblasts are mitogen and anchorage dependent, because integrin action allows for a sustained ERK signal and the expression of cyclin D1 in growth factor-treated cells.
Growth factors and the extracellular matrix provide the environmental cues that control the proliferation of most cell types. The binding of growth factors and matrix proteins to receptor tyrosine kinases and integrins, respectively, regulates several cytoplasmic signal transduction cascades, among which activation of the mitogen-activated protein kinase cascade, ras --> Raf --> MEK --> ERK, is perhaps the best characterized. Curiously, ERK activation has been associated with both stimulation and inhibition of cell proliferation. In this review, we summarize recent studies that connect ERK signaling to G1 phase cell cycle control and suggest that the cellular response to an ERK signal depends on both ERK signal intensity and duration. We also discuss studies showing that receptor tyrosine kinases and integrins differentially regulate the ERK signal in G1 phase.
Growth factors and the extracellular matrix provide the environmental cues that control the proliferation of most cell types. The binding of growth factors and matrix proteins to receptor tyrosine kinases and integrins, respectively, regulates several cytoplasmic signal transduction cascades, among which activation of the mitogen-activated protein kinase cascade, ras --> Raf --> MEK --> ERK, is perhaps the best characterized. Curiously, ERK activation has been associated with both stimulation and inhibition of cell proliferation. In this review, we summarize recent studies that connect ERK signaling to G1 phase cell cycle control and suggest that the cellular response to an ERK signal depends on both ERK signal intensity and duration. We also discuss studies showing that receptor tyrosine kinases and integrins differentially regulate the ERK signal in G1 phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.