The small nuclear inclusion (NIa) protein of the tobacco etch virus (TEV) is synthesized initially as part of a genome-derived high Mr precursor. The NIa protein releases itself from this genome-derived precursor by self-cleavage, or an autocatalytic processing event. Cleavage between specific glutamine-glycine dipeptides at the N and C termini generates the 430 amino acid or 49000 Mr (49K) NIa protein. The requirements of this autocatalytic release, or cis cleavage, were examined by constructing gene cassettes encoding the TEV NIa protein which could be ligated into particular locations in cDNA of the TEV genome and also into foreign gene DNA sequences. Using cellfree transcription and translation systems, polyproteins containing TEV NIa sequences were synthesized and assayed for (i) autocatalysis and (ii) the ability of a functional NIa proteinase, purified from plant tissue, to cleave in bimolecular or trans reactions various artificial polyproteins which contained an inactive form of the NIa proteinase. The NIa self-cleavage events required an active proteinase sequence and a consensus TEV cleavage site sequence at the N and C termini. These results were consistent for NIa protein sequences placed at a foreign TEV cleavage site or in unrelated proteins. Differences were noted in the trans cleavage of these sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.