We have successfully proposed the application of transition metal compounds in holographic recording media. Such compounds feature an ultra-fast light-induced linkage isomerization of the transition-metal–ligand bond with switching times in the sub-picosecond regime and lifetimes from microseconds up to hours at room temperature. This article highlights the photofunctionality of two of the most promising transition metal compounds and the photophysical mechanisms that are underlying the hologram recording. We present the latest progress with respect to the key measures of holographic media assembled from transition metal compounds, the molecular embedding in a dielectric matrix and their impressive potential for modern holographic applications.
The influence of ligand substitution on the photochromic properties of [Ru(bpy)(2)(OSOR)]∙PF(6) compounds (bpy = 2,2'-bipyridine, OSO = 2-methylsulfinylbenzoate) dissolved in propylene carbonate is studied by UV/VIS laser-spectroscopy as a function of temperature and exposure. The group R is either Bn (CH(2)C(6)H(5)), BnCl or BnMe. The photochromic properties originate from a phototriggered linkage isomerization located at the SO ligand. It is shown that the thermal stability of the studied compounds can be varied by ligand substitution in the range of 1.6 × 10(3) s to 3.9 × 10(4) s. In contrast, absorption spectra of ground and metastable states as well as the characteristic exposure of the photochromic response remain unchanged. The results are explained in the frame of photoinduced linkage isomerization located at the SO ligand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.