Iron is an essential nutrient for many bacteria. Since the metal is highly sequestered in host tissues, bound predominantly to heme, pathogenic bacteria often take advantage of heme uptake and degradation mechanisms to acquire iron during infection. The most common mechanism of releasing iron from heme is through oxidative degradation by heme oxygenases (HOs). In addition, an increasing number of proteins that belong to two distinct structural families have been implicated in aerobic heme catabolism. Finally, an enzyme that degrades heme anaerobically was recently uncovered, further expanding the mechanisms for bacterial heme degradation. In this analysis, we cover the spectrum and recent advances in heme degradation by infectious bacteria. We briefly explain heme oxidation by the two groups of recognized HOs to ground readers before focusing on two new types of proteins that are reported to be involved in utilization of heme iron. We discuss the structure and enzymatic function of proteins representing these groups, their biological context, and how they are regulated to provide a more complete look at their cellular role.
Nature is full of examples of symbiotic relationships. The critical symbiotic relation between host and mutualistic bacteria is attracting increasing attention to the degree that the gut microbiome is proposed by some as a new organ system. The microbiome exerts its systemic effect through a diverse range of metabolites, which include gaseous molecules such as H2, CO2, NH3, CH4, NO, H2S, and CO. In turn, the human host can influence the microbiome through these gaseous molecules as well in a reciprocal manner. Among these gaseous molecules, NO, H2S, and CO occupy a special place because of their widely known physiological functions in the host and their overlap and similarity in both targets and functions. The roles that NO and H2S play have been extensively examined by others. Herein, the roles of CO in host–gut microbiome communication are examined through a discussion of (1) host production and function of CO, (2) available CO donors as research tools, (3) CO production from diet and bacterial sources, (4) effect of CO on bacteria including CO sensing, and (5) gut microbiome production of CO. There is a large amount of literature suggesting the “messenger” role of CO in host–gut microbiome communication. However, much more work is needed to begin achieving a systematic understanding of this issue.
While phylogenetic and cluster analyses are often used to define clonal groups within bacterial species, the identification of clonal groups that are associated with specific ecological niches or host species remains a challenge. We used Listeria monocytogenes, which causes invasive disease in humans and different animal species and which can be isolated from a number of environments including food, as a model organism to develop and implement a two-step statistical approach to the identification of phylogenetic clades that are significantly associated with different source populations, including humans, animals, and food. If the null hypothesis that the genetic distances for isolates within and between source populations are identical can be rejected (SourceCluster test), then particular clades in the phylogenetic tree with significant overrepresentation of sequences from a given source population are identified (TreeStats test). Analysis of sequence data for 120 L. monocytogenes isolates revealed evidence of clustering between isolates from the same source, based on the phylogenies inferred from actA and inlA (P ؍ 0.02 and P ؍ 0.07, respectively; SourceCluster test). Overall, the TreeStats test identified 10 clades with significant (P < 0.05) or marginally significant (P < 0.10) associations with defined sources, including human-, animal-, and food-associated clusters. Epidemiological and virulence phenotype data supported the fact that the source-associated clonal groups identified here are biologically valid. Overall, our data show that (i) the SourceCluster and TreeStats tests can identify biologically meaningful source-associated phylogenetic clusters and (ii) L. monocytogenes includes clonal groups that have adapted to infect specific host species or colonize nonhost environments.Recent advances in DNA sequencing technologies have made DNA sequence-based subtyping methods such as multilocus sequence typing (MLST) widely available and affordable (2, 4), and as a result, a rich source of data for evolutionary and population genetics analyses of pathogenic and nonpathogenic bacteria is available (30). Traditional phylogenetic methods are frequently used to re-create the evolutionary history of a group of bacterial isolates and identify clonal groups of isolates that share a recent common ancestor. These methods also allow preliminary identification of clonal groups that show obvious associations with specific ecological niches, hosts, or disease symptoms in affected hosts. For example, MLST studies with Campylobacter jejuni showed that some clonal complexes within this species are exclusively or predominantly associated with specific host populations, including clonal complexes that were associated with human hosts and specific animal host species, such as sheep or poultry (5, 6). Similarly, Luan et al. (13) used MLST analysis to describe a specific clonal complex among invasive group B Streptococcus isolates which was associated with neonatal infections but which rarely caused invasive disease in adult...
Group A streptococcus (GAS) produces millions of infections worldwide, including mild mucosal infections, postinfection sequelae, and life-threatening invasive diseases. During infection, GAS readily acquires nutritional iron from host heme and hemoproteins. Here, we identified a new heme importer, named SiaFGH, and investigated its role in GAS pathophysiology. The SiaFGH proteins belong to a group of transporters with an unknown ligand from the recently described family of energy coupling factors (ECFs). A siaFGH deletion mutant exhibited high streptonigrin resistance compared to the parental strain, suggesting that iron ions or an iron complex is the likely ligand. Iron uptake and inductively coupled plasma mass spectrometry (ICP-MS) studies showed that the loss of siaFGH did not impact GAS import of ferric or ferrous iron, but the mutant was impaired in using hemoglobin iron for growth. Analysis of cells growing on hemoglobin iron revealed a substantial decrease in the cellular heme content in the mutant compared to the complemented strain. The induction of the siaFGH genes in trans resulted in the induction of heme uptake. The siaFGH mutant exhibited a significant impairment in murine models of mucosal colonization and systemic infection. Together, the data show that SiaFGH is a new type of heme importer that is key for GAS use of host hemoproteins and that this system is imperative for bacterial colonization and invasive infection. IMPORTANCE ECF systems are new transporters that take up various vitamins, cobalt, or nickel with a high affinity. Here, we establish the GAS SiaFGH proteins as a new ECF module that imports heme and demonstrate its importance in virulence. SiaFGH is the first heme ECF system described in bacteria. We identified homologous systems in the genomes of related pathogens from the Firmicutes phylum. Notably, GAS and other pathogens that use a SiaFGH-type importer rely on host hemoproteins for a source of iron during infection. Hence, recognizing the function of this noncanonical ABC transporter in heme acquisition and the critical role that it plays in disease has broad implications.
The rapid and persistent emergence of drug-resistant bacteria poses a looming public health crisis. The possible task of developing new sets of antibiotics to replenish the existing ones is daunting to say the least. Searching for adjuvants that restore or even enhance the potency of existing antibiotics against drug-resistant strains of bacteria represents a practical and cost-effective approach. Herein, we describe the discovery of potent adjuvants that extend the antimicrobial spectrum of existing antibiotics and restore their effectiveness toward drug-resistant strains including mcr-1-expressing strains. From a library of cationic compounds, MD-100, which has a diamidine core structure, was identified as a potent antibiotic adjuvant against Gram-negative bacteria. Further optimization efforts including the synthesis of ∼20 compounds through medicinal chemistry work led to the discovery of a much more potent compound MD-124. MD-124 was shown to sensitize various Gram-negative bacterial species and strains, including multidrug resistant pathogens, toward existing antibiotics with diverse mechanisms of action. We further demonstrated the efficacy of MD-124 in an ex vivo skin infection model and in an in vivo murine systemic infection model using both wild-type and drug-resistant Escherichia coli strains. MD-124 functions through selective permeabilization of the outer membrane of Gram-negative bacteria. Importantly, bacteria exhibited low-resistance frequency toward MD-124. In-depth computational investigations of MD-124 binding to the bacterial outer membrane using equilibrium and steered molecular dynamics simulations revealed key structural features for favorable interactions. The very potent nature of such adjuvants distinguishes them as very useful leads for future drug development in combating bacterial drug resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.