SUMMARY
Rho GTPases impact a number of activities important for oncogenesis. Here we describe a small molecule inhibitor which blocks oncogenic transformation induced by various Rho GTPases in fibroblasts, and the growth of human breast cancer and B lymphoma cells, without affecting normal cells. We identify the target of this inhibitor to be the metabolic enzyme glutaminase, which catalyzes the hydrolysis of glutamine to glutamate. We show that transformed fibroblasts and breast cancer cells exhibit elevated glutaminase activity that is dependent on Rho GTPases and NFκB activity, and is blocked by the small molecule inhibitor. These findings highlight a previously unappreciated connection between Rho GTPase activation and cellular metabolism, and demonstrate that targeting glutaminase activity can inhibit oncogenic transformation.
The 7-methyl guanosine cap structure of RNA is essential for key aspects of RNA processing, including pre-mRNA splicing, 3' end formation, U snRNA transport, nonsense-mediated decay and translation. Two cap-binding proteins mediate these effects: cytosolic eIF-4E and nuclear cap-binding protein complex (CBC). The latter consists of a CBP20 subunit, which binds the cap, and a CBP80 subunit, which ensures high-affinity cap binding. Here we report the 2.1 A resolution structure of human CBC with the cap analog m7GpppG, as well as the structure of unliganded CBC. Comparisons between these structures indicate that the cap induces substantial conformational changes within the N-terminal loop of CBP20, enabling Tyr 20 to join Tyr 43 in pi-pi stacking interactions with the methylated guanosine base. CBP80 stabilizes the movement of the N-terminal loop of CBP20 and locks the CBC into a high affinity cap-binding state. The structure for the CBC bound to m7GpppG highlights interesting similarities and differences between CBC and eIF-4E, and provides insights into the regulatory mechanisms used by growth factors and other extracellular stimuli to influence the cap-binding state of the CBC.
Non-classical secretory vesicles, collectively referred to as extracellular vesicles (EVs), have been implicated in different aspects of cancer cell survival and metastasis. Here, we describe how a specific class of EVs, called microvesicles (MVs), activates VEGF receptors and tumour angiogenesis through a unique 90 kDa form of VEGF (VEGF90K). We show that VEGF90K is generated by the crosslinking of VEGF165, catalysed by the enzyme tissue transglutaminase, and associates with MVs through its interaction with the chaperone Hsp90. We further demonstrate that MV-associated VEGF90K has a weakened affinity for Bevacizumab, causing Bevacizumab to be ineffective in blocking MV-dependent VEGF receptor activation. However, treatment with an Hsp90 inhibitor releases VEGF90K from MVs, restoring the sensitivity of VEGF90K to Bevacizumab. These findings reveal a novel mechanism by which cancer cell-derived MVs influence the tumour microenvironment and highlight the importance of recognizing their unique properties when considering drug treatment strategies.
The term vitamin E denotes a family of tocopherols and tocotrienols, plant lipids that are essential for vertebrate fertility and health. The principal form of vitamin E found in humans, RRR -␣ -tocopherol (TOH), is thought to protect cells by virtue of its ability to quench free radicals, and functions as the main lipid-soluble antioxidant. Regulation of vitamin E homeostasis occurs in the liver, where TOH is selectively retained while other forms of vitamin E are degraded. Through the action of tocopherol transfer protein (TTP), TOH is then secreted from the liver into circulating lipoproteins that deliver the vitamin to target tissues. Presently, very little is known regarding the intracellular transport of vitamin E. We utilized biochemical, pharmacological, and microscopic approaches to study this process in cultured hepatocytes. We observe that tocopherol-HDL complexes are efficiently internalized through scavenger receptor class B type I. Once internalized, tocopherol arrives within ف 30 min at intracellular vesicular organelles, where it colocalizes with TTP, and with a marker of the lysosomal compartment (LAMP1), before being transported to the plasma membrane in a TTP-dependent manner. We further show that intracellular processing of tocopherol involves a functional interaction between TTP and an ABC-type transporter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.