During the past decade a number of pesticides, industrial by-products, manufactured products such as plastics, and natural chemicals have been shown to disrupt the endocrine system. These chemicals are referred to as endocrine-disrupting chemicals (EDCs). These chemicals have received considerable attention, in part because endocrine disruption is a relatively unstudied area in toxicology and is only recently being taken into account in risk assessment. The focus here is on EDCs with estrogenic activity (EEDCs), which are chemicals that act as hormone mimics via estrogen receptor mechanisms; this is currently the largest group of known endocrine disruptors. The main purpose of this article is to present an overview of the mechanisms of hormone action that provide the basis for understanding how EEDCs have the potential to be biologically active at low, environmentally relevant doses. Our strategy is to discuss the receptor mechanisms mediating responses to a natural hormone, 17β-estradiol (E 2 ), and then to use this information as the basis for describing the low-dose effects of chemicals that disrupt the normal functioning of this hormonal system, either by mimicking, modulating, or antagonizing the activity of the hormone. We have chosen to use estrogen as our example because there is more known about the biology of estrogens and xenoestrogens than other components of the endocrine system for which there is evidence for disruption by environmental chemicals; however, the information presented here is applicable to endocrine disruptors that interfere with other hormonal systems.We will begin by briefly reviewing information concerning the relationship between dose, receptor occupancy, and responses (such as cell proliferation) after binding of E 2 to estrogen receptors (ER-α) in cultured human MCF-7 breast cancer cells. A number of specific factors influence the dose of an EEDC that reaches the target cells to produce a response. These factors include route of administration, absorption, distribution, metabolism, rate of clearance, plasma transport, cell uptake, affinity for estrogen receptor subtype in the cell, and the interaction of the ligand-receptor complex with tissue-specific factors comprising the transcriptional apparatus. This mechanistic information provides the basis for establishing the dose at the target site in cells (nuclear receptors associated with DNA or more recently identified receptors associated with the cell membrane) for an EEDC required to elicit a biological response similar to that produced by a dose of E 2 with equal estrogenic activity. Modeling that takes into account each of these factors would encompass physiologically based pharmacokinetic information (1), as well as quantitative structure-activity relationships (QSAR) (2,3). We have previously discussed the factors that influence access of E 2 and EEDCs from blood to estrogen receptors in cells elsewhere (4-6). Our primary focus in this review is on the latter part of the overall process that occurs once an estrogenic chemic...
Two chemicals previously shown to have estrogenic activity, bisphenol A and octylphenol, were examined for their effects on accessory reproductive organs and daily sperm production in male offspring of mice fed these chemicals during pregnancy. These chemicals are used in the manufacture of plastics and other products, and have been detected in food and water consumed by animals and people. From gestation day 11-17 female mice were fed an average concentration (dissolved in oil) of bisphenol A or octylphenol of 2 ng/g body weight (2 ppb) and 20 ng/g (20 ppb). The 2 ppb dose of bisphenol A is lower than the amount reported to be swallowed during the first hour after application of a plastic dental sealant (up to 931 micrograms; 13.3 ppb in a 70 kg adult). We found that the 2 ng/g dose of bisphenol A permanently increased the size of the preputial glands, but reduced the size of the epididymides; these organs develop from different embryonic tissues. At 20 ng/g, bisphenol A significantly decreased efficiency of sperm production (daily sperm production per g testis) by 20% relative to control males. The only significant effect of octylphenol was a reduction in daily sperm production and efficiency of sperm production at the 2 ng/g dose. A new approach to studying physiologically relevant doses of environmental endocrine disruptors is discussed, particularly with regard to the development of the reproductive organs, the brain, and behavior.
Background: There has been increasing interest in the concept that exposures to environmental chemicals may be contributing factors to the epidemics of diabetes and obesity. On 11–13 January 2011, the National Institute of Environmental Health Sciences (NIEHS) Division of the National Toxicology Program (NTP) organized a workshop to evaluate the current state of the science on these topics of increasing public health concern.Objective: The main objective of the workshop was to develop recommendations for a research agenda after completing a critical analysis of the literature for humans and experimental animals exposed to certain environmental chemicals. The environmental exposures considered at the workshop were arsenic, persistent organic pollutants, maternal smoking/nicotine, organotins, phthalates, bisphenol A, and pesticides. High-throughput screening data from Toxicology in the 21st Century (Tox21) were also considered as a way to evaluate potential cellular pathways and generate -hypotheses for testing which and how certain chemicals might perturb biological processes related to diabetes and obesity.Conclusions: Overall, the review of the existing literature identified linkages between several of the environmental exposures and type 2 diabetes. There was also support for the “developmental obesogen” hypothesis, which suggests that chemical exposures may increase the risk of obesity by altering the differentiation of adipocytes or the development of neural circuits that regulate feeding behavior. The effects may be most apparent when the developmental exposure is combined with consumption of a high-calorie, high-carbohydrate, or high-fat diet later in life. Research on environmental chemical exposures and type 1 diabetes was very limited. This lack of research was considered a critical data gap. In this workshop review, we outline the major themes that emerged from the workshop and discuss activities that NIEHS/NTP is undertaking to address research recommendations. This review also serves as an introduction to an upcoming series of articles that review the literature regarding specific exposures and outcomes in more detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.