Regionally extensive 3D seismic data from the Lower Congo Basin, offshore Angola, have been used to investigate the influence of salt‐related structures on the location, geometry and evolution of Miocene deep‐water depositional systems. Isochron variations and cross‐sectional lap‐out relationships have then been used to qualitatively reconstruct the syn‐depositional morphology of salt‐cored structures. Coherence and Red‐green‐blue‐blended spectral decomposition volumes, tied to cross‐sectional seismic facies, allow imaging of the main sediment transport pathways and the distribution of their component seismic facies. Major sediment transport pathways developed in an area of complex salt‐related structures comprising normal faults, isolated diapirs and elongate salt walls with intervening intraslope basins. Key structural controls on the location of the main sediment transport pathways and the local interaction between lobe‐channel‐levee systems and individual structures were the length and height of structures, the location and geometry of segment boundaries, the growth and linkage of individual structures, and the incidence angle between structural strike and flow direction. Where the regional flow direction was at a high angle to structural strike, transport pathways passed progressively through multiple intraslope basins in a fill and spill manner. Segment boundaries and structural lows between diapirs acted as spill points, focusing sediment transport between intraslope basins. Channel–lobe transitions are commonly associated with these spill points, where flows expanded and entered depocentres. Deflection of channel‐levee complexes around individual structures was mainly controlled by the length of structures and incidence angle. Where regional flow direction was at a low angle to structural strike, sediment transport pathways ran parallel to structure and were confined to individual intraslope basins for many tens of kilometres. Spill between intraslope basins was rare. The relative position of structures and their segment boundaries was fixed during the Miocene, which effectively pinned the locations where sediment spilled from one intraslope basin to the next. As a result, major sediment transport pathways were used repeatedly, giving rise to vertically stacked lobe‐channel‐levee complexes along the pathways. Shadow zones devoid of coarse clastics developed in areas that were either structurally isolated from the sediment transport pathways or bypassed as a result of channel diversion.
Innovative seismic forward modeling is used to illustrate the sensitivity within seismic data, and its application in the interpretation of onlap and pinch-out of terminating deep-water sandstones, two critical components in deep-water exploration and production. Sandstone quality, net-to-gross estimates, volume calculations, vertical connectivity, and stratigraphic trapping are all dependent on the sandstone extent and their seismic characteristics in these settings. However, seismic resolution is commonly insufficient to resolve the critical reservoir parameters. Seismic modeling of termination styles based on integrated outcrop and subsurface properties allows for depth-and resolution-focused predictive models to be built for improved subsurface analysis. This technique is currently underused as a method to better understand the sensitivity of seismic data to the target lithologies and their geometries. The Grès d'Annot Formation is a well-studied sand-prone deep-water system of Paleogene age, deposited in a bathymetrically complex setting. Six end-member termination styles are discussed, including three sand-prone styles-simple onlap (O s ), draping onlap (O d ), and bed thickening (O t )-and three heterolithic styles-advancing pinch-out (P a ), convergent pinch-out (P c ), and convergent thickening and pinch-out (P ct ). Local thickening close to the system margins is common in both sand-prone and heterolithic terminating strata and plays an important function in the appropriate distribution of sandstone. The outcrops are interpreted as potential (process) analogs for the complex sandstone distribution
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.