Cetacean (dolphin, whale, and porpoise) brains are among the least studied mammalian brains because of the formidability of collecting and histologically preparing such relatively rare and large specimens. Magnetic resonance imaging offers a means of observing the internal structure of the brain when traditional histological procedures are not practical. Furthermore, internal structures can be analyzed in their precise anatomic positions, which is difficult to accomplish after the spatial distortions often accompanying histological processing. In this study, images of the brain of an adult bottlenose dolphin, Tursiops truncatus, were scanned in the coronal plane at 148 antero-posterior levels. From these scans a computer-generated three-dimensional model was constructed using the programs VoxelView and VoxelMath (Vital Images, Inc.). This model, wherein details of internal and external morphology are represented in three-dimensional space, was then resectioned in orthogonal planes to produce corresponding series of virtual sections in the horizontal and sagittal planes. Sections in all three planes display the sizes and positions of major neuroanatomical features such as the arrangement of cortical lobes and subcortical structures such as the inferior and superior colliculi, and demonstrate the utility of MRI for neuroanatomical investigations of dolphin brains. Anat Rec 264: [397][398][399][400][401][402][403][404][405][406][407][408][409][410][411][412][413][414] 2001.
We present the MKID Exoplanet Camera (MEC), a z through J band (800-1400 nm) integral field spectrograph located behind The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) at the Subaru Telescope on Maunakea that utilizes Microwave Kinetic Inductance Detectors (MKIDs) as the enabling technology for high contrast imaging. MEC is the first permanently deployed near-infrared MKID instrument and is designed to operate both as an IFU, and as a focal plane wavefront sensor in a multi-kHz feedback loop with SCExAO. The read noise free, fast time domain information attainable by MKIDs allows for the direct probing of fast speckle fluctuations that currently limit the performance of most high contrast imaging systems on the ground and will help MEC achieve its ultimate goal of reaching contrasts of 10 −7 at 2 λ/D. Here we outline the instrument details of MEC including the hardware, firmware, and data reduction and analysis pipeline. We then discuss MEC's current on-sky performance and end with future upgrades and plans.
We report the direct imaging discovery of a low-mass companion to the nearby accelerating A star, HIP 109427, with the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument coupled with the Microwave Kinetic Inductance Detector Exoplanet Camera (MEC) and CHARIS integral field spectrograph. CHARIS data reduced with reference star point spread function (PSF) subtraction yield 1.1-2.4 μm spectra. MEC reveals the companion in Y and J band at a comparable signal-to-noise ratio using stochastic speckle discrimination, with no PSF subtraction techniques. Combined with complementary follow-up L p photometry from Keck/NIRC2, the SCExAO data favors a spectral type, effective temperature, and luminosity of M4-M5.5, 3000-3200 K, and
Large ultra-sensitive detector arrays are needed for present and future observatories for far infra-red, submillimeter wave (THz), and millimeter wave astronomy. With increasing array size, it is increasingly important to control stray radiation inside the detector chips themselves, the surface wave. We demonstrate this effect with focal plane arrays of 880 lens-antenna coupled Microwave Kinetic Inductance Detectors (MKIDs). Presented here are near field measurements of the MKID optical response versus the position on the array of a reimaged optical source. We demonstrate that the optical response of a detector in these arrays saturates off-pixel at the ∼ −30 dB level compared to the peak pixel response. The result is that the power detected from a point source at the pixel position is almost identical to the stray response integrated over the chip area. With such a contribution, it would be impossible to measure extended sources, while the point source sensitivity is degraded due to an increase of the stray loading. However, we show that by incorporating an on-chip stray light absorber, the surface wave contribution is reduced by a factor >10. With the on-chip stray light absorber the point source response is close to simulations down to the ∼ −35 dB level, the simulation based on an ideal Gaussian illumination of the optics. In addition, as a crosscheck we show that the extended source response of a single pixel in the array with the absorbing grid is in agreement with the integral of the point source measurements.
We present observations of the Trumpler 14/Carina I region carried out using the Stratospheric Terahertz Observatory 2 (STO2). The Trumpler 14/Carina I region is in the west part of the Carina Nebula Complex, which is one of the most extreme star-forming regions in the Milky Way. We observed Trumpler 14/Carina I in the 158 µm transition of [C ii] with a spatial resolution of 48 and a velocity resolution of 0.17 km s −1 . The observations cover a 0.25 • by 0.28 • area with central position l = 297.34 • , b = -0.60 • . The kinematics show that bright [C ii] structures are spatially and spectrally correlated with the surfaces of CO clouds, tracing the photodissociation region and ionization front of each molecular cloud. Along 7 lines of sight that traverse Tr 14 into the dark ridge to the southwest, we find that the [C ii] luminosity from the HII region is 3.7 times that from the PDR. In same los we find in the PDRs an average ratio of 1:4.1:5.6 for the mass in atomic gas:dark-CO gas: molecular gas traced by CO. Comparing multiple gas tracers including HI 21cm, [C ii], CO, and radio recombination lines, we find that the HII regions of the Carina Nebula Complex are well-described as HII regions with one-side freely expanding towards us, consistent with the champagne model of ionized gas evolution. The dispersal of the GMC in this region is dominated by EUV photoevaporation; the dispersal timescale is 20-30 Myr. Effective Resolution a 55 Pointing Accuracy <15 Spectral Resolution 1 MHz Velocity Resolution 0.17 km s −1 a Angular resolution of the regridded map.This study contains extensive analysis with many new findings. The followings are the highlights of this study and can be found in the discussion and conclusions sections. Comparing our [C ii] spectral map to the Mopra CO map, we found that bright [C ii] emission in the CNC is closely related to the CO clumps in position-position-velocity space, suggesting that bright [C ii] emission likely arises from PDR and ionization fronts. We also found large absorption cavities in HI 21 cm emission and that those cavities are in a good agreement with the CO clouds/clumps and the Keyhole Nebula, a CO-dark molecular cloud, in position-position space. On the other hand, velocities of the absorption cavities are ±5-10 km s −1 shifted from the CO velocity centroids, suggesting that the cavities may follow cold HI gas photoevaporating or stripped from cloud surfaces. Through detailed PDR modeling of 10 different regions representing various ISM structures, we found a mass proportion of 1:4.1:5.6 for the atomic:dark:molecular(CO) gas and that six out of ten regions are dominated by [C ii] emission from HII regions rather than PDRs. Finally, combining kinematics and modelings, we found that the three-dimensional morphology of the CNC is consistent with one side of numerous blister HII regions expanding freely toward us, similar to a champagne flow, with a lifetime of CO clouds exposed to HII regions being 20-30 Myr.We describe details of observations using STO2 and data reduction ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.