We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at framerates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.
We have fabricated and characterized 10,000 and 20,440 pixel Microwave Kinetic Inductance Detector (MKID) arrays for the Dark-speckle Near-IR Energy-resolved Superconducting Spectrophotometer (DARKNESS) and the MKID Exoplanet Camera (MEC). These instruments are designed to sit behind adaptive optics systems with the goal of directly imaging exoplanets in a 800-1400 nm band. Previous large optical and near-IR MKID arrays were fabricated using substoichiometric titanium nitride (TiN) on a silicon substrate. These arrays, however, suffered from severe non-uniformities in the TiN critical temperature, causing resonances to shift away from their designed values and lowering usable detector yield. We have begun fabricating DARKNESS and MEC arrays using platinum silicide (PtSi) on sapphire instead of TiN. Not only do these arrays have much higher uniformity than the TiN arrays, resulting in higher pixel yields, they have demonstrated better spectral resolution than TiN MKIDs of similar design. PtSi MKIDs also do not display the hot pixel effects seen when illuminating TiN on silicon MKIDs with photons with wavelengths shorter than 1 µm.
The energy resolution of a single photon counting Microwave Kinetic Inductance Detector (MKID) can be degraded by noise coming from the primary low temperature amplifier in the detector's readout system. Until recently, quantum limited amplifiers have been incompatible with these detectors due to dynamic range, power, and bandwidth constraints. However, we show that a kinetic inductance based traveling wave parametric amplifier can be used for this application and reaches the quantum limit. The total system noise for this readout scheme was equal to ∼2.1 in units of quanta. For incident photons in the 800 to 1300 nm range, the amplifier increased the average resolving power of the detector from ∼6.7 to 9.3 at which point the resolution becomes limited by noise on the pulse height of the signal. Noise measurements suggest that a resolving power of up to 25 is possible if redesigned detectors can remove this additional noise source.Optical MKIDs 1 are superconducting, single photon counting, energy resolving sensors which are sensitive to radiation in the ultraviolet to near infrared range. Advantages over semiconductor detectors in this wavelength band include the absence of false counts (read noise, dark current, and cosmic rays), intrinsic spectral resolution, high speed, and radiation hardness. Other superconducting detectors have shown promise at these wavelengths, 2,3 but they are difficult to chain together into large arrays. Optical MKIDs, however, are naturally frequency domain multiplexed, which has enabled full-scale instruments at the Palomar observatory 4,5 and Subaru telescope. 6 In the future, these detectors will be included in a balloon borne mission. 7 Photon counting MKIDs operate differently than MKIDs designed for longer wavelength detection in the bolometric regime. Instead of measuring a constant flux of photons, they record individual photon events similarly to an X-ray calorimeter. To achieve a measurable detector response for a single photon event they tend to be smaller and able to handle less signal power than their longer wavelength bolometric counterparts. In these conditions, amplifier noise can be comparable in magnitude to the detector phase noise that originates from microscopic two-level system (TLS) states on the surface or between layers of the device. 8 The TLS noise can be mitigated through careful sample preparation, 9 fabrication, 10,11 and device design 12-14 while the effect of amplifier noise can be addressed by designing detectors that can handle higher signal powers. 15,16 These routes are actively pursued, but, for optical MKIDs, improving the main readout amplifier's noise floor offers an additional path to lowering the total system noise.Quantum mechanics imposes an uncertainty relationship between the two quadratures of an electromagnetic signal. 17 This relationship results in a lower limit to the noise that a high gain, phase-preserving, linear amplifier adds to its input signal, equal to that of the electromagnetic zero-point fluctuations (A = 1 /2). To readout a...
We present the MKID Exoplanet Camera (MEC), a z through J band (800-1400 nm) integral field spectrograph located behind The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) at the Subaru Telescope on Maunakea that utilizes Microwave Kinetic Inductance Detectors (MKIDs) as the enabling technology for high contrast imaging. MEC is the first permanently deployed near-infrared MKID instrument and is designed to operate both as an IFU, and as a focal plane wavefront sensor in a multi-kHz feedback loop with SCExAO. The read noise free, fast time domain information attainable by MKIDs allows for the direct probing of fast speckle fluctuations that currently limit the performance of most high contrast imaging systems on the ground and will help MEC achieve its ultimate goal of reaching contrasts of 10 −7 at 2 λ/D. Here we outline the instrument details of MEC including the hardware, firmware, and data reduction and analysis pipeline. We then discuss MEC's current on-sky performance and end with future upgrades and plans.
We report the direct imaging discovery of a low-mass companion to the nearby accelerating A star, HIP 109427, with the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument coupled with the Microwave Kinetic Inductance Detector Exoplanet Camera (MEC) and CHARIS integral field spectrograph. CHARIS data reduced with reference star point spread function (PSF) subtraction yield 1.1-2.4 μm spectra. MEC reveals the companion in Y and J band at a comparable signal-to-noise ratio using stochastic speckle discrimination, with no PSF subtraction techniques. Combined with complementary follow-up L p photometry from Keck/NIRC2, the SCExAO data favors a spectral type, effective temperature, and luminosity of M4-M5.5, 3000-3200 K, and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.