Thymus-derived CD4 ؉ CD25 ؉ regulatory T cells suppress autoreactive CD4 ؉ and CD8 ؉ T cells and thereby protect from autoimmunity. In animal models, adoptive transfer of CD4 ؉ CD25 ؉ regulatory T cells has been shown to prevent and even cure autoimmune diseases as well as pathogenic alloresponses after solid organ and stem-cell transplantations. We recently described methods for the efficient in vitro expansion of human regulatory T cells for clinical applications. We now demonstrate that only CCR7-and L-selectin (CD62L) - IntroductionSelf-tolerance within the T-cell compartment is primarily ensured by positive and negative selection during T-cell development in the thymus. Autoreactive T cells that escape central deletion are frequently controlled by peripheral tolerance mechanisms, including cell-mediated suppression by CD4 ϩ CD25 ϩ regulatory T (Treg) cells. [1][2][3] Thymic maturation and suppressive function of natural Treg cells depend on expression of the transcriptional repressor forkhead box P3 (FOXP3), as nonsense mutations in this gene result in loss of Treg-cell function and severe autoimmunity in mice and humans. [4][5][6][7][8] Apart from suppression of autoreactive T cells, FOXP3 ϩ CD4 ϩ CD25 ϩ Treg cells also dampen immune responses against infectious pathogens, 9 cancer, 10 and allogeneic organ 11 and stem-cell grafts. 12 Thus, depletion of Treg cells seems a promising strategy to augment immune responsiveness to tumors, chronic infections, and vaccination, while an enhancement of Treg-cell activity is envisaged for the prevention and treatment of T-cellinduced diseases. 13 In animal models, the adoptive transfer of CD4 ϩ CD25 ϩ Treg cells has been shown to protect from type 1 diabetes 14,15 or experimental autoimmune encephalomyelitis 16 and even revert ongoing disease in colitis 17,18 and arthritis. 19 Similarly, adoptively transferred Treg cells protected against rejection and graft-versus-host disease (GVHD) after allogeneic organ transplantation and bone marrow transplantation (BMT), respectively. 11,[20][21][22][23][24][25] In human peripheral blood, natural Treg cells mainly reside within the subpopulation of CD4 ϩ T cells with high CD25 expression levels (CD25 high ), 26 while cells with intermediate CD25 expression (CD25 int ) consist mainly of recently activated and memory T cells, with only 5% to 15% FOXP3 ϩ Treg cells (P.H. and M.E., unpublished results, June 2006). Due to lack of Treg cell-specific surface markers, isolation of CD4 ϩ CD25 high T cells is thus far considered the most promising strategy for the generation of pure Treg-cell products. 27 As they represent only 1% to 3% of peripheral-blood mononuclear cells (PBMCs), we and others recently described methods for the in vitro expansion of Treg cells for future clinical trials. [28][29][30] Cross-linking of stimulating CD3 and CD28 antibodies by beads or Fc receptor-bearing fibroblasts in combination with high-dose interleukin-2 (IL-2) resulted in a 3-to 4-log expansion within 3 to 4 weeks. Cultured cells maintained Treg-c...
The adoptive transfer of donor CD4+CD25+ regulatory T cells has been shown to protect from lethal graft-versus-host disease after allogeneic bone marrow transplantation in murine disease models. Efficient isolation strategies that comply with good manufacturing practice (GMP) guidelines are prerequisites for the clinical application of human CD4+CD25+ regulatory T cells. Here we describe the isolation of CD4+CD25+ T cells with regulatory function from standard leukapheresis products by using a 2-step magnetic cell-separation protocol performed under GMP conditions. The generated cell products contained on average 49.5% CD4+CD25high T cells that phenotypically and functionally represented natural CD4+CD25+ regulatory T cells and showed a suppressive activity comparable to that of CD4+CD25+ regulatory T-cell preparations purified by non-GMP-approved fluorescence-activated cell sorting.
In summary, IL-33 has extenuating effects in chronic DSS-induced colitis: Excessive Th1-directed cytokine responses are shifted toward Th2-like immune reactions and general inflammation parameters are reduced. IL-33-induced neutrophil influx during chronic inflammation reduced translocation of pathogenic bacteria across damaged epithelium.
Acute graft-versus-host disease (aGvHD) is a frequent complication after allogeneic bone marrow/stem cell transplantation (BMT/SCT) induced by co-transplanted alloreactive conventional donor T cells. We previously demonstrated that the adoptive transfer of donor CD4+CD25+Foxp3+ regulatory T cells (Treg) at the time of BMT prevents aGvHD in murine models. Yet, the therapeutic potential of donor Treg for the treatment of established aGvHD has not yet been studied in detail. We now used in vitro expanded phenotypically and functionally stable murine Treg to explore their therapeutic efficacy in haploidentical aGvHD models. Upon transfer donor Treg ameliorate clinical and histologic signs of aGvHD and significantly improve survival. They migrate to lymphoid as well as aGvHD target organs, predominantly the gastrointestinal tract, where they inhibit the proliferation of conventional T cells, reduce the influx of myeloid cells, and the accumulation of inflammatory cytokines. Successfully treated animals restore aGvHD-induced tissue damage in target organs and lymphoid tissues, thereby supporting lymphocyte reconstitution. The therapeutically applied Treg population survives long term without conversion into pathogenic effector T cells. These results demonstrate that donor Treg not only prevent aGvHD, but are also efficacious for the treatment of this life-threatening BMT complication.
A putative involvement of the vasculature seems to play a critical role in the pathophysiology of graft-versus-host disease (GVHD). We aimed to characterize alterations of mesenteric resistance arteries in GVHD in a fully MHC-mismatched model of BALB/c mice conditioned with total body irradiation that underwent transplantation with bone marrow cells and splenocytes from syngeneic (BALB/c) or allogeneic (C57BL/6) donors. After 4 weeks, animals were sacrificed and mesenteric resistance arteries were studied in a pressurized myograph. The expression of endothelial (eNOS) and inducible nitric oxide (NO)-synthase (iNOS) was quantified and vessel wall ultrastructure was investigated with electron microscopy. The myograph study revealed an endothelial dysfunction in allogeneic-transplant recipients, whereas endothelium-independent vasodilation was similar to syngeneic-transplant recipients or untreated controls. The expression of eNOS was decreased and iNOS increased, possibly contributing to endothelial dysfunction. Additionally, arteries of allogeneic transplant recipients exhibited a geometry-independent increase in vessels strain. For both findings, electron microscopy provided a structural correlate by showing severe damage of the whole vessel wall in allogeneic-transplant recipient animals. Our study provides further data to prove, and is the first to characterize, functional and structural vascular alterations in the early course after allogeneic transplantation directly in an ex vivo setting and, therefore, strongly supports the hypothesis of a vascular form of GVHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.