The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription. AbstractNumerical weather forecasts, such as meteorological forecasts of precipitation, are inherently uncertain. These uncertainties depend on model physics as well as initial and boundary conditions. Since precipitation forecasts form the input into hydrological models, the uncertainties of the precipitation forecasts result in uncertainties of flood forecasts. In order to consider these uncertainties, ensemble prediction systems are applied. These systems consist of several members simulated by different models or using a single model under varying initial and boundary conditions. However, a too wide uncertainty range obtained as a result of taking into account members with poor prediction skills may lead to underestimation or exaggeration of the risk of hazardous events. Therefore, the uncertainty range of model-based flood forecasts derived from the meteorological ensembles has to be restricted.In this paper, a methodology towards improving flood forecasts by weighting ensemble members according to their skills is presented. The skill of each ensemble member is evaluated by comparing the results of forecasts corresponding to this member with observed values in the past. Since numerous forecasts are required in order to reliably evaluate the skill, the evaluation procedure is time-consuming and tedious. Moreover, the evaluation is highly subjective, because an expert who performs it makes his decision based on his implicit knowledge.Therefore, approaches for the automated evaluation of such forecasts are required. Here, we present a semi-automated approach for the assessment of precipitation forecast ensemble 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 2 members. The approach is based on supervised machine learning and was tested on ensemble precipitation forecasts for the area of the Mulde river basin in Germany. Based on the evaluation results of the specific ensemble members, weights corresponding to their forecast skill were calculated. These weights were then successfully used to reduce the uncertainties within rainfall-runoff simulations and flood risk predictions. *Manuscript Click here to view linked References
Pavement assessment is a crucial process for the maintenance of municipal roads. However, the detection of pavement distress is usually performed either manually or offline, which is not only time-consuming and subjective, but also results in an enormous amount of data being stored persistently before processing. State-of-the-art pavement image processing methods executed on a CPU are not able to analyze pavement images in real time. To compensate this limitation of the methods, we propose an automated approach for pavement distress detection. In particular, GPU implementations of a noise removal, a background correction and a pavement distress detection method were developed. The median filter and the top-hat transform are used to remove noise and shadows in the images. The wavelet transform is applied in order to calculate a descriptor value for classification purposes. The approach was tested on 1549 images. The results show that real-time pre-processing and analysis are possible.
Pavement condition monitoring is mainly performed manually. Inspectors are driving or walking the road network bare eyed to look for irregularities. Moreover, processing the collected data for understanding the road condition is also a manual task. In this paper a framework that automates the process is presented. Video data collected from the car's parking camera is utilized to detect defects in frames. Simultaneously, elevation signals collected from accelerometers attached to the car are processed to reconstruct the profile of the road and detect defects associated with its z-axis, such as bumps. A GPS device is synchronized with the other sensors to acquire the data's geolocation. Detected defects are then classified according to their type and their severity is assessed. All information is then transferred via 4G network to a central server, where the Road Condition Index of road segments necessary to classify roads is calculated. Finally, everything is saved in a Pavement Management System. Preliminary results on the processing of video data demonstrate the frameworks' promising application. The initial identification of frames including defects produces an accuracy of 96% and approximately 97% precision. Further experiments on such frames, aiming at the detection of potholes, patches and three different types of cracks result in over 84% overall accuracy and over 85% precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.