To investigate the mechanisms behind the antifibrotic effect associated with epidermal regeneration, the expression of 12 fibroblast genes important for the modulation of the extracellular matrix (ECM), as well as α-smooth muscle actin, was studied in a keratinocyte-fibroblast organotypic skin culture model. The study was performed over time during epidermal generation and in the presence or absence of the profibrotic factor transforming growth factor-β. the Presence of epidermal differentiation markers in the model was essentially coherent with that of native skin. Fibroblast gene expression was analyzed with real-time polymerase chain reaction after removal of the epidermal layer. After 2 days of air-exposed culture, 11 out of the 13 genes studied were significantly regulated by keratinocytes in the absence or presence of transforming growth factor-β. The regulation of connective tissue growth factor, collagen I and III, fibronectin, plasmin system regulators, matrix metalloproteinases and their inhibitors as well as α-smooth muscle actin was consistent with a suppression of ECM formation or contraction. Overall, the results support a view that keratinocytes regulate fibroblasts to act catabolically on the ECM in epithelialization processes. This provides possible mechanisms for the clinical observations that reepithelialization and epidermal wound coverage counteract excessive scar formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.