Conjugated polymers are the material of choice for organic bioelectronic interfaces as they combine mechanical flexibility with electric and ionic conductivity. Their attractive properties are largely demonstrated in vitro, while the in vivo applications are limited to the coating of inorganic electrodes, where they are used to improve the intimate electronic contact between the device and the tissue. However, there has not been a commensurate rise in the in vivo applications of entirely organic implantable electronic devices based on conjugated polymers. To date, there is no comprehensive understanding of how these devices will interface with real biological systems. With the push toward increasingly thinner and more flexible next generation medical implants, this limitation remains a major detractor in the translation of conjugated polymers toward biological applications. This research news article examines the few reported in vivo studies and attempts to establish why there is such a dearth in the literature.
Organic semiconductors remain of major interest in the field of bioelectrochemistry for their versatility in chemical and electrochemical behavior. These materials have been tailored using organic synthesis for use in cell stimulation, sustainable energy production, and in biosensors. Recent progress in the field of fully organic semiconductor biosensors is outlined in this review, with a particular emphasis on the synthetic tailoring of these semiconductors for their intended application. Biosensors ultimately function on the basis of a physical, optical or electrochemical change which occurs in the active material when it encounters the target analyte. Electrochemical biosensors are becoming increasingly popular among organic semiconductor biosensors, owing to their good detection performances, and simple operation. The analyte either interacts directly with the semiconductor material in a redox process or undergoes a redox process with a moiety such as an enzyme attached to the semiconductor material. The electrochemical signal is then transduced through the semiconductor material. The most recent examples of organic semiconductor biosensors are discussed here with reference to the material design of polymers with semiconducting backbones, specifically conjugated polymers, and polymer semiconducting dyes. We conclude that direct interaction between the analyte and the semiconducting material is generally more sensitive and cost effective, despite being currently limited by the need to identify, and synthesize selective sensing functionalities. It is also worth noting the potential roles of highly-sensitive, organic transistor devices and small molecule semiconductors, such as the photochromic and redox active molecule spiropyran, as polymer pendant groups in future biosensor designs.
Organic electrochemical transistors (OECTs) for bioelectronic applications require the design of conjugated polymers that are stable in aqueous environments and afford high energy efficiency and good performance in OECTs. Polymers based on poly(ethylenedioxythiophene) (PEDOT) are promising in this area due to their low oxidation potential and reversible redox, but they often require cross-linking to prevent dissolution and yield OECTs operating in the less efficient depletion mode. In this work, a new conjugated polymer PEDOT-Phos is presented, which combines a conjugated poly(ethylenedioxythiophene) (PEDOT) backbone with alkyl-protected phosphonate groups. PEDOT-Phos exhibits a low oxidation onset potential (−0.157 V vs Ag/AgCl) and its nanoporous morphology affords it a high volumetric capacitance (282 ± 62 F cm–3). Without any cross-linking, additives, or post-treatment, PEDOT-Phos can be used in aqueous OECTs with efficient accumulation mode operation, long-term stability when immersed in aqueous media, low threshold voltages (−0.161 ± 0.005 V), good transconductances (9.3 ± 1.8 mS), and ON/OFF current ratios (618 ± 54) comparable to other PEDOT-based materials in OECTs. These results highlight the great promise of PEDOT-Phos as a stand-alone channel material for energy-efficient, bioelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.