Despite being central to parasite establishment and subsequent host pathological and immunologic responses, host-parasite interactions during early third-stage filarial larva (L3) migration are poorly understood. These studies aimed to define early tissue migration of Brugia pahangi L3 in the gerbil (Meriones unguiculatus) and measure host cellular responses during this period. Gerbils were intradermally inoculated in the hind limb with 100 B. pahangi L3, and necropsies were performed at various times. At 3 h, most L3 (96.3%) were recovered from tissues associated with the infection site, with marked L3 migration occurring by 24 h. Larvae were dispersed throughout the lymphatics at 7 days postinfection (dpi), and at 28 dpi, most parasites were recovered from the spermatic cord lymphatics. Parasites were identified histologically at all time points. Inflammatory cells, primarily neutrophils, were frequently observed around larvae in the dermis and muscle near the injection site at 3 h and 24 h. Levels of interleukin-6 (IL-6) and tumor necrosis factor-␣ mRNA peaked at 3 h in all tissues, with IL-6 levels also high in the spleen at 28 dpi. Levels of IL-4 mRNA were elevated in all tissues at 28 dpi. These observations demonstrate that L3 migrate quickly through various tissues and into lymph nodes in a predictable pattern. Migrating L3 induce an early acute inflammatory response that is modulated as parasites establish in the lymphatics. Polarization of the host response towards a dominant Th2-like profile is present at 7 dpi and is well established by 28 dpi in this permissive host.It is generally accepted that third-stage filarial nematode infective larvae (L3) emerge from the mosquito labia during feeding, accumulate in a pool of hemolymph, and enter the host through the wound left by the mosquito vector (13). While the L3 are apparently unable to penetrate intact skin, their early migrations require movements through the connective tissues of the skin to lymphatic vessels and, in some cases, the blood vascular system. These events have been demonstrated experimentally by feeding Brugia-infected mosquitoes on cats (14, 17) and gerbils (3) and by in vivo studies involving the application of L3 to punctured skin (14). Furthermore, previous studies by Ah et al. (1) have clearly shown that L3 can actively and rapidly migrate through a variety of complex tissues following placement on the surface of the gerbil eyeball. The mechanisms utilized by the larvae during this early migratory phase through these various tissues have not been defined.Early migrations of L3 through the tissues of the skin not only are central to the successful establishment of parasites but are also likely to be important in the initial induction of the host response. It is expected that these responses are involved in the elimination or inhibition of incoming L3 during early migrations. The migration of L3 into the skin may also be uniquely involved in defining the nature of subsequent immune responses to parasite antigens. Based on various in ...
Approximately 30 years ago, researchers reported intracellular bacteria in filarial nematodes. These bacteria are relatives of the arthropod symbiont Wolbachia and occur in many filarial nematodes, including Brugia pahangi and Brugia malayi. Wolbachia bacteria have been implicated in a variety of roles, including filaria development and fecundity and the pathogenesis of lymphatic lesions associated with filarial infections. However, the role of the bacteria in worm biology or filarial disease is still not clear. The present experiments support previous data showing that tetracycline eliminates or reduces Wolbachia bacteria in B. pahangi in vivo. The elimination of Wolbachia was closely linked to a reduction in female fecundity and the viability of both sexes, suggesting that the killing of Wolbachia is detrimental to B. pahangi. The gerbils treated with tetracycline showed reduced levels of interleukin-4 (IL-4) and IL-5 mRNA in renal lymph nodes and spleens compared with the levels in B. pahangi-infected gerbils not treated with tetracycline. However, similar findings were noted in B. pahangi-infected gerbils treated with ivermectin, suggesting that the loss of circulating microfilariae, not the reduction of Wolbachia bacteria, was associated with the altered cytokine profile. Despite the change in T-cell cytokines, there was no difference in the sizes of renal lymph nodes isolated from gerbils in each treatment group. Furthermore, the numbers, sizes, or cellular compositions of granulomas examined in the lymphatics or renal lymph nodes did not differ with treatment. These data suggest that Wolbachia may not play a primary role in the formation of lymphatic lesions in gerbils chronically infected with B. pahangi.Lymphatic filariasis is caused primarily by the filarial nematodes Wuchereria bancrofti and Brugia malayi and affects more than 120 million people throughout the tropics and subtropics. The disease presents as a broad range of clinical and subclinical symptoms, including fever, acute and chronic inflammation, lymphatic edema, and elephantiasis. While much research has focused on the disease caused by infection with Brugia or Wuchereria, the mechanism(s) underlying the pathogenesis of lymphatic filariasis has not been clearly defined. In both acute and chronic infections, these mechanisms probably involve a diverse range of inflammatory reactions attributable to the parasite, host inflammatory responses, and opportunistic infections (40).Approximately 30 years ago, several researchers reported intracellular bacteria in filarial nematodes (31, 37, 54). These bacteria have since been identified as relatives of the arthropod symbiont Wolbachia (46). Wolbachia bacteria have now been reported to exist in many filarial nematodes, including B. malayi and Brugia pahangi (3,30,49,55). Interestingly, Wolbachia has recently been proposed to play a role in the induction of the host immune response to filariae (9,44,50,51). Some researchers suggest that lipopolysaccharide (LPS)-like molecules from filarial Wolbachia b...
Wolbachia sp. was first reported in filarial nematodes over 25 yr ago. Today, much research is focused on the role of these bacteria in filarial worm biology. The filarial symbionts are closely related to arthropod symbionts, which are known to modify host reproduction and biology through various mechanisms. Similarly, it has been suggested that Wolbachia sp. is essential for long-term survival and reproduction of filariae. We report that Wolbachia sp. 16S rDNA was not found in the equine filarial nematode Setaria equina, using either polymerase chain reaction (PCR) or DNA hybridization. In addition, ultrastructural analysis of adult worms did not reveal the presence of Wolbachia sp. in hypodermal cords or reproductive tissues. These data suggest that like Onchocerca flexuosa and Acanthocheilonema vitae, S. equina may not be dependent on Wolbachia sp. for survival.
Infection with mosquito-born filarial nematodes occurs when hosts are bitten by a vector carrying the infective third stage larvae (L3) of the parasites. These larvae, deposited on the skin by the feeding mosquito, are presumed to enter the skin via the vector-induced puncture wound. Larvae of Brugia spp. must then migrate from the entry site, penetrate various skin layers, and locate a lymphatic vessel that leads to their lymphatic predilection site. We have recently established an intradermal (ID) infection model using B. pahangi and the Mongolian gerbil, allowing us to investigate the migratory capability ofB. pahangi. Larval and adult parasites recovered from the peritoneal cavities of gerbils were capable of establishing an infection following ID (larvae) or subcutaneous (adult) injection. Third and fourth stage larvae both migrated away from the injection site within hours, although data suggest they localize to different lymphatic tissues at 3 days postinfection (DPI). Immature adult (28 day) B. pahangi also migrated away from their SC inoculation site within 7 DPI. Mature (45 day) adult B. pahangi displayed little migration away from the SC infection site, suggesting tissue migration may be limited to developing stages of the parasite.
Wolbachia sp. was first reported in filarial nematodes over 25 yr ago. Today, much research is focused on the role of these bacteria in filarial worm biology. The filarial symbionts are closely related to arthropod symbionts, which are known to modify host reproduction and biology through various mechanisms. Similarly, it has been suggested that Wolbachia sp. is essential for long-term survival and reproduction of filariae. We report that Wolbachia sp. 16S rDNA was not found in the equine filarial nematode Setaria equina, using either polymerase chain reaction (PCR) or DNA hybridization. In addition, ultrastructural analysis of adult worms did not reveal the presence of Wolbachia sp. in hypodermal cords or reproductive tissues. These data suggest that like Onchocerca flexuosa and Acanthocheilonema vitae, S. equina may not be dependent on Wolbachia sp. for survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.