The article presents the results of the analysis of the plastic flow of titanium alloys in the process of the Linear Friction Welding (LFW). LFW is a high-tech process for joining critical structural elements of aerospace engineering from light and high-temperature alloys. Experimental studies of LFW modes of such alloys are expensive and technically difficult. Numerical simulation was carried out for understanding the physics of the LFW process and the formation laws of a strong welded joint of titanium alloys. Simulation by the SPH method was performed using the LS DYNA software package (ANSYS WB 15.2) and the developed module for the constitutive equation. The new coupled thermomechanical 3D model of LFW process for joining structural elements from alpha and alpha + beta titanium alloys was proposed. It was shown that the formation of a welded joint occurs in a complex and unsteady stress-strain state. In the near-surface layers of the bodies being welded, titanium alloys can be deformed in the mode of severe plastic deformation. A deviation of the symmetry plane of the plastic deformation zone from the initial position of the contact plane of the bodies being welded occurs during a process of LFW. Extrusion of material from the welded joint zone in the transverse direction with respect to the movement of bodies is caused by a pressure gradient and a decrease in the alloy flow stress due to heating. The hcp-bcc phase transition of titanium alloys upon heating in the LFW process necessitates an increase in the cyclic loading time to obtain a welded joint.
Методом многоуровневого компьютерного моделирования исследованно влияние распределения зерен по размерам на механическое поведение сплавов Zr−Nb при высокоскоростном растяжении. Исследовано влияние объемной концентрации крупных зерен на зарождение и рост повреждений. Показано, что сплавы Zr−Nb с зеренными структурами, характеризующимися бимодальным распределением размеров, обладают повышенными прочностными и деформационными характеристиками.
This paper studies a mechanical metamaterial with tetrachiral topology by mathematical modeling. Chirality is the property of an object that makes the object distinguishable from its mirror image; chirality can be left- or right-handed. The mechanical response of two metamaterial unit cells with different configurations (patterns A and B) is investigated. It is found that the cubic cell with a regular pattern A exhibits orthotropic mechanical behavior under loading along three coordinate axes. An irregular pattern B differs from pattern A in that the upper face of the unit cell has an opposite chirality. This architectural transformation is considered as a topological defect, which enhances the twisting effect in the loaded metamaterial. Analysis of displacements and stresses shows that the mechanical behavior of the pattern B cell is described by the model of a transversely isotropic material. The orthotropic and transversely isotropic behavior of the cells of given configurations is also confirmed by the values of the effective elastic constants. Microstructural geometry and mechanical deformation of metamaterials are shown to be closely related. It is shown that a topological defect in a unit cell of a tetrachiral metamaterial strongly determines its twisting behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.