CD-sens seems to be very useful for the determination of a patient's allergen sensitivity and should be evaluated for the measurement and monitoring of anti-IgE treatment efficacy. CD-max, the conventional approach to basophil allergen challenge, which mirrors cell reactivity, gives incorrect information.
A comparative proteomic approach was applied to examine nasal lavage fluid (NLF) from patients with seasonal allergic rhinitis (SAR, n = 6) and healthy subjects (controls, n = 5). NLF samples were taken both before allergy (pollen) season and during season, and proteins were analyzed by two-dimensional gel electrophoresis (2-DE) and matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) after tryptic cleavage. Twenty proteins were selected and quantified. During allergy season, the levels of six sialylated isoforms of PLUNC (palate lung nasal epithelial clone) were lower in SAR patients than controls, as were the levels of six isoforms of von Ebner's gland protein (VEGP), including a previously undescribed form with N-linked glycosylation, and of cystatin S. PLUNC is a new innate immunity protein and VEGP and cystatin S are two endogenous proteinase inhibitors. By contrast, the levels of an acidic form of alpha-1-antitrypsin were higher in SAR patients than controls. One previously unidentified NLF protein was found in all samples from the SAR patients during allergy season but not in any sample before allergy season: this protein was identified as eosinophil lysophospholipase (Charcot-Leyden crystal protein/galactin 10). MS/MS analysis of the N-terminus of the protein showed removal of Met and acetylation of Ser. Altogether, these findings illustrate the potential use of proteomics for identifying protein changes associated with allergic rhinitis and for revealing post-translational modifications of such new potential markers of allergic inflammation.
BackgroundClara cell protein (CC16) is ascribed a protective and anti-inflammatory role in airway inflammation. Lower levels have been observed in asthmatic subjects as well as in subjects with intermittent allergic rhinitis than in healthy controls. Nasal nitric oxide (nNO) is present in high concentrations in the upper airways, and considered a biomarker with beneficial effects, due to inhibition of bacteria and viruses along with stimulation of ciliary motility. The aim of this study was to evaluate the presumed anti-inflammatory effects of nasal CC16 and nNO in subjects with allergic rhinitis.MethodsThe levels of CC16 in nasal lavage fluids, achieved from subjects with persistent allergic rhinitis (n = 13), intermittent allergic rhinitis in an allergen free interval (n = 5) and healthy controls (n = 7), were analyzed by Western blot. The levels of nNO were measured by the subtraction method using NIOX®. The occurrences of effector cells in allergic inflammation, i.e. metachromatic cells (MC, mast cells and basophiles) and eosinophils (Eos) were analyzed by light microscopy in samples achieved by nasal brushing.ResultsThe levels of CC16 correlated with nNO levels (r2 = 0.37; p = 0.02) in allergic subjects.The levels of both biomarkers showed inverse relationships with MC occurrence, as higher levels of CC16 (p = 0.03) and nNO (p = 0.05) were found in allergic subjects with no demonstrable MC compared to the levels in subjects with demonstrable MC. Similar relationships, but not reaching significance, were observed between the CC16 and nNO levels and Eos occurrence. The levels of CC16 and nNO did not differ between the allergic and the control groups.ConclusionsThe correlation between nasal CC16 and nNO levels in patients with allergic rhinitis, along with an inverse relationship between their levels and the occurrences of MC in allergic inflammation, may indicate that both biomarkers have anti-inflammatory effects by suppression of cell recruitment. The mechanisms behind these observations warrant further analyses.
The aims of this study were to describe the changes in the nasal lavage fluid (NLF) protein pattern after exposure to the irritating epoxy chemical dimethylbenzylamine (DMBA) and to identify the affected proteins using a proteomic approach. The protein patterns of NLF from six healthy subjects and eight epoxy workers with airway irritation were analysed using two-dimensional gel electrophoresis (2-DE) before and after exposure to 100 microg m(-3) DMBA for 2 h in an exposure chamber. NLF proteins were identified by (i) comparison with a 2-DE NLF reference database; (ii) N-terminal amino acid sequencing; and (iii) mass spectrometry. In NLF from healthy subjects, the levels of immunoglobulin A increased and the levels of Clara cell protein 16 (CC16) decreased after chamber exposure, while in NLF from epoxy workers, alpha(2)-macroglobulin and caeruloplasmin increased. Two previously unidentified proteins decreased in NLF from epoxy workers after exposure; these were identified as statherin and calgranulin B. In addition, the subjects who developed high counts of eosinophils in their nasal mucosa after chamber exposure had significantly lower levels of immunoglobulin-binding factor (IgBF) before exposure than subjects with low eosinophil infiltration. These results show that short-term exposure to DMBA causes distinct changes in NLF proteins. Moreover, three proteins that have previously not been associated with upper airway irritation were identified: statherin, calgranulin B and IgBF. Further studies are needed to investigate whether these proteins may be used as biomarkers of airway irritation and to give new insight into the ways in which occupational exposure to irritants causes inflammation of the airways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.