Sandwich composite materials are established in the industry. Polyurethane foam reinforced with spacer fabric represents an innovative solution for a core in this field. It is manufactured in the Structural Reaction Injection Moulding (SRIM). This paper describes new investigations that provide the base for component and process design when using this Interpenetrating Phase Composite (IPC). Filling studies were carried out for this purpose in three moulding tools with different cavities with and without spacer fabric. It is shown that the PUR foam expansion and the foam bulk density are clearly influenced by the sprue type, cavity design and spacer fabric. Simulations are necessary to investigate all process-structure-property relationships in detail and to enable a user-friendly and efficient design of material and process. Adequate mathematical models to simulate the transport of mass, heat and momentum in the SRIM are presented in this paper. The resistance to the expansion process caused by the porous structures in the domain were taken into account. The transport of momentum in the mould is described with the Navier–Stokes-Brinkman equations which in the limit of the permeability tensor reduces to the Navier–Stokes equation. The model equations are solved numerically and the results show reasonable agreement with the experimental data.
Sandwich structures consisting of fibre-reinforced plastic (FRP) facings and core are ideally suited as substitution materials for reducing component masses. The endless fibre reinforcement has the greatest performance potential. Both thermoset and thermoplastics are already being processed into endless fibre-reinforced sandwich facings according to the state of the art. The 3D endless fibre reinforcement of cores is a current research topic. This paper describes the development of a hybrid sandwich consisting of thermoplastic composite facings and an innovative core composite. This is made of polyurethane (PUR) rigid or flexible foam, which is reinforced with spacer fabric. The sandwich manufacturing in Reaction Injection Moulding (RIM) includes the original forming of the core and the simultaneous bonding of the facings. This efficient process offers the potential for the production of such complex structures in medium or large series. The sandwich structures and their individual components were characterised in the standardised compression and bending test. The lightweight potential of spacer fabric reinforcement is demonstrated by comparing the specific mechanical properties of sandwich structures with and without core reinforcement. In comparison to reinforced and unreinforced foams, the effect of sandwich design is also shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.