The successful identification of promising investigational therapies for the treatment of epilepsy can be credited to the use of numerous animal models of seizure and epilepsy for over 80 years. In this time, the maximal electroshock test in mice and rats, the subcutaneous pentylenetetrazol test in mice and rats, and more recently the 6 Hz assay in mice, have been utilized as primary models of electrically or chemically-evoked seizures in neurologically intact rodents. In addition, rodent kindling models, in which chronic network hyperexcitability has developed, have been used to identify new agents. It is clear that this traditional screening approach has greatly expanded the number of marketed drugs available to manage the symptomatic seizures associated with epilepsy. In spite of the numerous antiseizure drugs (ASDs) on the market today, the fact remains that nearly 30% of patients are resistant to these currently available medications. To address this unmet medical need, the National Institute of Neurological Disorders and Stroke (NINDS) Epilepsy Therapy Screening Program (ETSP) revised its approach to the early evaluation of investigational agents for the treatment of epilepsy in 2015 to include a focus on preclinical approaches to model pharmacoresistant seizures. This present report highlights the in vivo and in vitro findings associated with the initial pharmacological validation of this testing approach using a number of mechanistically diverse, commercially available antiseizure drugs, as well as several probe compounds that are of potential mechanistic interest to the clinical management of epilepsy.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Dravet syndrome is a rare, but catastrophic genetic epilepsy that is diagnosed in the first year of life. Approximately 80% of patients with DS carry a mutation in the SCN1A gene, which encodes for the voltage-gated sodium channel, Nav1.1. Currently, no anti-seizure drug (ASD) exists that adequately controls seizures. Patients with DS often present clinically with a febrile seizure and generalized tonic-clonic seizures that continue throughout life. To facilitate the development of ASDs for DS, the contract site of the NINDS Epilepsy Therapy Screening Program (ETSP) has evaluated a mouse model of DS, the conditional Scn1a*A1783V mouse. The heterozygous offspring have a 50% survival rate and all have hyperthermia-induced seizures, which mimic clinical afebrile seizures. Several prototype ASDs were administered via intraperitoneal injections at the time-to-peak effect, which was previously determined before the induction of a hyperthermia-induced seizure. The results suggest that hyperthermia-induced seizures in this model of DS are highly refractory to a battery of ASDs. Exceptions were clobazam and the combination of clobazam and valproic acid with add-on stiripentol, which elevated seizure thresholds. In addition, clobazam and carbamazepine were administered once a week over 4 weeks to demonstrate their effect on hyperthermia-induced seizures was consistent. Clobazam and carbamazepine consistently increased and lowered temperature thresholds, respectively. Overall, the data demonstrate the proposed model for DS is suitable for screening novel compounds for the ability to block hyperthermia-induced seizures and heterozygous mice can be evaluated repeatedly over the course of several weeks, allowing for higher throughput screening.
Objective The lamotrigine‐resistant amygdala kindling model uses repeated administration of a low dose of lamotrigine during the kindling process to produce resistance to lamotrigine, which also extends to some other antiseizure drugs (ASDs). This model of pharmacoresistant epilepsy has been incorporated into the testing scheme utilized by the Epilepsy Therapy Screening Program (ETSP). Although some ASDs have been evaluated in this model, a comprehensive evaluation of ASD prototypes has not been reported. Methods Following depth electrode implantation and recovery, rats were exposed to lamotrigine (5 mg/kg, i.p.) prior to each stimulation during the kindling development process (~3 weeks). A test dose of lamotrigine was used to confirm that fully kindled rats were lamotrigine‐resistant. Efficacy (unambiguous protection against electrically elicited convulsive seizures) was defined as a Racine score < 3 in the absence of overt compound‐induced side effects. Various ASDs, comprising several mechanistic classes, were administered to fully kindled, lamotrigine‐resistant rats. Where possible, multiple doses of each drug were administered in order to obtain median effective dose (ED 50 ) values. Results Five sodium channel blockers tested (eslicarbazepine, lacosamide, lamotrigine, phenytoin, and rufinamide) were either not efficacious or effective only at doses that were not well‐tolerated in this model. In contrast, compounds targeting either GABA receptors (clobazam, clonazepam, phenobarbital) or GABA‐uptake proteins (tiagabine) produced dose‐dependent efficacy against convulsive seizures. Compounds acting to modulate Ca 2+ channels show differential activity: Ethosuximide was not effective, whereas gabapentin was moderately efficacious. Ezogabine and valproate were also highly effective, whereas topiramate and levetiracetam were not effective at the doses tested. Significance These results strengthen the conclusion that the lamotrigine‐resistant amygdala kindling model demonstrates pharmacoresistance to certain ASDs, including, but not limited to, sodium channel blockers, and supports the utility of the model for helping to identify compounds with potential efficacy against pharmacoresistant seizures.
Objective: Infection with Theiler's murine encephalomyelitis virus (TMEV) in C57Bl/6J mice results in handling-induced seizures and is useful for evaluating compounds effective against infection-induced seizures. However, to date only a few compounds have been evaluated in this model, and a comprehensive study of antiseizure medications (ASMs) has not yet been performed. Furthermore, as the TMEV infection produces marked neuroinflammation, an evaluation of prototype anti-inflammatory compounds is needed as well.Methods: Male C57Bl/6J mice were inoculated with TMEV (day 0) followed by daily administrations of test compounds (day 3-7) and subsequent handling sessions (day 3-7). Doses of ASMs, comprising several mechanistic classes, were selected based on previously published data demonstrating the effect of these compounds in reducing seizures in the 6 Hz model of pharmacoresistant seizures. Doses of anti-inflammatory compounds, comprising several mechanistic classes, were selected based on published evidence of reduction of inflammation or inflammation-related endpoints.Results: Several prototype ASMs reduced acute seizures following TMEV infection: lacosamide, phenytoin, ezogabine, phenobarbital, tiagabine, gabapentin, levetiracetam, topiramate, and sodium valproate. Of these, phenobarbital and sodium valproate had the greatest effect (>95% seizure burden reduction).Prototype anti-inflammatory drugs celecoxib, dexamethasone, and prednisone also moderately reduced seizure burden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.