Tissue engineering and cell therapy require large-scale production of homogeneous populations of lineage-restricted progenitor cells that easily can be induced to differentiate into a specific tissue. We have developed straightforward protocols for the establishment of human embryonic stem (hES) cell-derived mesenchymal progenitor (hES-MP) cell lines. The reproducibility was proven by derivation of multiple hES-MP cell lines from 10 different hES cell lines. To illustrate clinical applicability, a xeno-free hES-MP cell line was also derived. None of the markers characteristic for undifferentiated hES cells were detected in the hES-MP cells. Instead, these cells were highly similar to mesenchymal stem cells with regard to morphology and expression of markers. The safety of hES-MP cells following transplantation was studied in severely combined immunodeficient (SCID) mice. The implanted hES-MP cells gave rise to homogeneous, well-differentiated tissues exclusively of mesenchymal origin and no teratoma formation was observed. These cells further have the potential to differentiate toward the osteogenic, adipogenic, and chondrogenic lineages in vitro. The possibility of easily and reproducibly generating highly expandable hES-MP cell lines from well-characterized hES cell lines with differentiation potential into several mesodermal tissues entails an enormous potential for the field of regenerative medicine.
Cardiac "side population" (SP) cells have previously been found to differentiate into both endothelial cells and cardiomyocytes in mice and rats, but there are no data on SP cells in the human adult heart. Therefore, human cardiac atrial biopsies were dissociated, stained for SP cells and analyzed with FACS. Identified cell populations were analyzed for gene expression by quantitative real-time PCR and subjected to in vitro differentiation. Only biopsies from the left atrium contained a clearly distinguishable population of SP cells (0.22 ± 0.08%). The SP population was reduced by co-incubation with MDR1 inhibitor Verapamil, while the ABCG2 inhibitor FTC failed to decrease the number of SP cells. When the gene expression was analyzed, SP cells were found to express significantly more MDR1 than non-SP cells. For ABCG2, there was no detectable difference. SP cells also expressed more of the stem cell-associated markers C-KIT and OCT-4 than non-SP cells. On the other hand, no significant difference in the expression of endothelial and cardiac genes could be detected. SP cells were further subdivided based on CD45 expression. The CD45-SP population showed evidence of endothelial commitment at gene expression level. In conclusion, the results show that a SP population of cells is present also in the human adult heart.
The described 3D culture model could be a valuable tool when studying the influence of different compounds on proliferation and differentiation processes in cardiac stem or progenitor cells in cardiac regenerative research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.