Laminins are structural components of basement membranes. In addition, they are key extracellular-matrix regulators of cell adhesion, migration, differentiation and proliferation. This Commentary focuses on a relatively understudied aspect of laminin biology: how is laminin deposited into the extracellular matrix? This topic has fascinated researchers for some time, particularly considering the diversity of patterns of laminin that can be visualized in the matrix of cultured cells. We discuss current ideas of how laminin matrices are assembled, the role of matrix receptors in this process and how laminin-associated proteins modulate matrix deposition. We speculate on the role of signaling pathways that are involved in laminin-matrix deposition and on how laminin patterns might play an important role in specifying cell behaviors, especially directed migration. We conclude with a description of new developments in the way that laminin deposition is being studied, including the use of tagged laminin subunits that should allow the visualization of laminin-matrix deposition and assembly by living cells.
The motility of keratinocytes is an essential component of wound closure and the development of epidermal tumors. In vitro, the specific motile behavior of keratinocytes is dictated by the assembly of laminin-332 tracks, a process that is dependent upon ␣64 integrin signaling to Rac1 and the actin-severing protein cofilin. Here we have analyzed how cofilin phosphorylation is regulated by phosphatases (slingshot (SSH) or chronophin (CIN)) downstream of signaling by ␣64 integrin/Rac1 in human keratinocytes. Keratinocytes express all members of the SSH family (SSH1, SSH2, and SSH3) and CIN. However, expression of phosphatase-dead versions of all three SSH proteins, but not dominant inactive CIN, results in phosphorylation/inactivation of cofilin, changes in actin cytoskeleton organization, loss of cell polarity, and assembly of aberrant arrays of laminin-332 in human keratinocytes. SSH activity is regulated by 14-3-3 protein binding, and intriguingly, 14-3-3/␣64 integrin protein interaction is required for keratinocyte migration. We wondered whether 14-3-3 proteins function as regulators of Rac1-mediated keratinocyte migration patterns. In support of this hypothesis, inhibition of Rac1 results in an increase in 14-3-3 protein association with SSH. Thus, we propose a novel mechanism in which ␣64 integrin signaling via Rac1, 14-3-3 proteins, and SSH family members regulates cofilin activation, cell polarity, and matrix assembly, leading to specific epidermal cell migration behavior.
Background: Keratinocyte migration involves the coordinated expression of various integrin heterodimers. Results: Loss of ␣64 integrin expression impairs cell migration and decreases ␣2 and ␣3 integrin subunit expression via transcriptional and translational mechanisms. Conclusion: Migration of human keratinocytes requires ␣64 integrin-dependent regulation of integrin subunit expression. Significance: ␣64 integrin controls integrin expression profiles and thereby regulates migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.