The chemical behaviour of molecules can be significantly modified by confinement to volumes comparable to the dimensions of the molecules. Although such confined spaces can be found in various nanostructured materials, such as zeolites, nanoporous organic frameworks and colloidal nanocrystal assemblies, the slow diffusion of molecules in and out of these materials has greatly hampered studying the effect of confinement on their physicochemical properties. Here, we show that this diffusion limitation can be overcome by reversibly creating and destroying confined environments by means of ultraviolet and visible light irradiation. We use colloidal nanocrystals functionalized with light-responsive ligands that readily self-assemble and trap various molecules from the surrounding bulk solution. Once trapped, these molecules can undergo chemical reactions with increased rates and with stereoselectivities significantly different from those in bulk solution. Illumination with visible light disassembles these nanoflasks, releasing the product in solution and thereby establishes a catalytic cycle. These dynamic nanoflasks can be useful for studying chemical reactivities in confined environments and for synthesizing molecules that are otherwise hard to achieve in bulk solution.
A compound combining the features of a molecular rotor and a photoswitch was synthesized and was shown to exist as three diastereomers, which interconvert via a reversible cyclic reaction scheme. Each of the three diastereomers was isolated, and by following the equilibration kinetics, activation barriers for all reactions were calculated. The results indicate that the properties of molecular switches depend heavily on their immediate chemical environment. The conclusions are important in the context of designing new switchable molecules and materials.
The increased utilization of one-dimensional (1D) TiO2 and titanate nanowires (TNWs) in various applications was the motivation behind studying their stability in this work, given that stability greatly influences both the success of the application and the environmental impact. Due to their high abundance in aqueous environments and their rich technological applicability, surfactants are among the most interesting compounds used for tailoring the stability. The aim of this paper is to determine the influence of surfactant molecular structure on TNW stability/aggregation behavior in water and aqueous NaBr solution by dynamic and electrophoretic light scattering. To accomplish this, two structurally different quaternary ammonium surfactants (monomeric DTAB and the corresponding dimeric 12-2-12) at monomer and micellar concentrations were used to investigate TNW stability in water and NaBr. It was shown that TNWs are relatively stable in Milli-Q water. However, the addition of NaBr induces aggregation, especially as the TNW mass concentration increases. DTAB and 12-2-12 adsorb on TNW surfaces as a result of the superposition of favorable electrostatic and hydrophobic interactions. As expected, the interaction of TNWs with 12-2-12 was stronger than with DTAB, due to the presence of two positively charged head groups and two hydrophobic tails. As a consequence of the higher adsorption of 12-2-12, TNWs remained stable in both media, while DTAB showed an opposite behavior. In order to gain more insight into changes in the surface properties after surfactant adsorption on the TNW surface, a surface complexation model was employed. With this first attempt to quantify the contribution of the surfactant structure on the adsorption equilibrium according to the observed differences in the intrinsic log K values, it was shown that 12-2-12 interacts more strongly with TNWs than DTAB. The modelling results enable a better understanding of the interaction between TNWs and surfactants as well as the prediction of the conditions that can promote stabilization or aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.