CaHMB improved strength and MQ without RE. Further, RE is an effective intervention for improving all measures of body composition and functionality.
Background: Intermittent bouts of high-intensity exercise result in diminished stores of energy substrates, followed by an accumulation of metabolites, promoting chronic physiological adaptations. In addition, β-alanine has been accepted has an effective physiological hydrogen ion (H + ) buffer. Concurrent high-intensity interval training (HIIT) and β-alanine supplementation may result in greater adaptations than HIIT alone. The purpose of the current study was to evaluate the effects of combining β-alanine supplementation with high-intensity interval training (HIIT) on endurance performance and aerobic metabolism in recreationally active college-aged men.
BackgroundThe purpose of this study was to determine the effects of the pre-workout supplement Assault™ (MusclePharm, Denver, CO, USA) on upper and lower body muscular endurance, aerobic and anaerobic capacity, and choice reaction time in recreationally-trained males. Subjective feelings of energy, fatigue, alertness, and focus were measured to examine associations between psychological factors and human performance.MethodsTwelve recreationally-trained males participated in a 3-week investigation (mean +/- SD, age: 28 +/- 5 y, height: 178 +/- 9 cm, weight: 79.2 +/- 15.7 kg, VO2max: 45.7 +/- 7.6 ml/kg/min). Subjects reported to the human performance laboratory on three separate occasions. All participants completed a baseline/familiarization day of testing that included a maximal graded exercise test for the determination of aerobic capacity (VO2max), one-rep maximum (1-RM) for bench and leg press to determine 75% of 1-RM, choice reaction tests, and intermittent critical velocity familiarization. Choice reaction tests included the following: single-step audio and visual, one-tower stationary protocol, two-tower lateral protocol, three-tower multi-directional protocol, and three-tower multi-directional protocol with martial arts sticks. Subjects were randomly assigned to ingest either the supplement (SUP) or the placebo (PL) during Visit 2. Subjects were provided with the cross-over treatment on the last testing visit. Testing occurred 20 min following ingestion of both treatments.ResultsSignificant (p < 0.05) main effects for the SUP were observed for leg press (SUP: 13 ± 6 reps, PL: 11 ± 3 reps), perceived energy (SUP: 3.4 ± 0.9, PL: 3.1 ± 0.8), alertness (SUP: 4.0 ± 0.7, PL: 3.5 ± 0.8), focus (SUP: 4.1 ± 0.6, PL: 3.5 ± 0.8), choice reaction audio single-step (SUP: 0.92 ± 0.10 s, PL: 0.97 ± 0.11 s), choice reaction multi-direction 15 s (SUP: 1.07 ± 0.12 s, PL: 1.13 ± 0.14 s), and multi-direction for 30 s (SUP: 1.10 ± 0.11 s, PL: 1.14 ± 0.13 s).ConclusionsIngesting the SUP before exercise significantly improved agility choice reaction performance and lower body muscular endurance, while increasing perceived energy and reducing subjective fatigue. These findings suggest that the SUP may delay fatigue during strenuous exercise.
BackgroundCluster sets (CSs) are a popular resistance training (RT) strategy categorised by short rest periods implemented between single or groups of repetitions. However, evidence supporting the effectiveness of CSs on acute intra-session neuromuscular performance is still equivocal.ObjectiveThe objective of this investigation was to determine the efficacy of a single session of CSs to attenuate losses in force, velocity and power compared to traditional set (TS) training.MethodsScreening consisted of a systematic search of EMBASE, Google Scholar, PubMed, Scopus and SPORTDiscus. Inclusion criteria were (1) measured one or more of mean/peak force, velocity or power; (2) implemented CSs in comparison to TSs; (3) an acute design, or part thereof; and (4) published in an English-language, peer-reviewed journal. Raw data (mean ± standard deviation) were extracted from included studies and converted into standardised mean differences (SMDs) and ± 95% confidence intervals (CIs).ResultsTwenty-five studies were used to calculate SMD ± 95% CI. Peak (SMD = 0.815, 95% CI 0.105–1.524, p = 0.024) and mean (SMD = 0.863, 95% CI 0.319–1.406, p = 0.002) velocity, peak (SMD = 0.356, 95% CI 0.057–0.655, p = 0.019) and mean (SMD = 0.692, 95% CI 0.395–0.990, p < 0.001) power, and peak force (SMD = 0.306, 95% CI − 0.028 to 0.584, p = 0.031) favoured CS. Subgroup analyses demonstrated an overall effect for CS across loads (SMD = 0.702, 95% CI 0.548–0.856, p < 0.001), included exercises (SMD = 0.664, 95% CI 0.413–0.916, p < 0.001), experience levels (SMD = 0.790, 95% CI 0.500–1.080, p < 0.001) and CS structures (SMD = 0.731, 95% CI 0.567–0.894, p < 0.001) with no difference within subgroups.ConclusionCSs are a useful strategy to attenuate the loss in velocity, power and peak force during RT and should be used to maintain neuromuscular performance, especially when kinetic outcomes are emphasised. However, it remains unclear if the benefits translate to improved performance across all RT exercises, between sexes and across the lifespan.Electronic supplementary materialThe online version of this article (10.1007/s40279-019-01172-z) contains supplementary material, which is available to authorized users.
The purpose of the present study was to evaluate the effects of cycle ergometry high-intensity interval training (HIIT) with and without beta-alanine supplementation on maximal oxygen consumption rate (VO2 peak), cycle ergometer workload at the ventilatory threshold (VT W), and body composition. Forty-four women (mean +/- SD age = 21.8 +/- 3.7 years; height = 166.5 +/- 6.6 cm; body mass (BM) = 65.9 +/- 10.8 kg; VO2 peak = 31.5 +/- 6.2 ml x kg(-1) x min(-1)) were randomly assigned to 1 of 3 groups: beta-alanine (BA, n = 14) 1.5 g + 15 g dextrose powder; placebo (PL, n = 19) 16.5 g dextrose powder; or control (CON, n = 11). Testing was conducted at baseline (week 0), after 3 weeks (week 4), and after 6 weeks (week 8). VO2 peak (ml x kg(-1) x min(-1)) and VT W were measured with a metabolic cart during graded exercise tests on a corival cycle ergometer, and body composition (percent fat = % fat and fat-free mass = FFM) were determined by air displacement plethysmography. High-intensity interval training was performed on a corival cycle ergometer 3 times per week with 5 2-minute work intervals and 1-minute passive recovery with undulating intensities (90-110% of the workload recorded at VO2 peak) during each training session. VO2 peak increased (p
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.