The importance of ecological management for reducing the vulnerability of biodiversity to climate change is increasingly recognized, yet frameworks to facilitate a structured approach to climate adaptation management are lacking. We developed a conceptual framework that can guide identification of climate change impacts and adaptive management options in a given region or biome. The framework focuses on potential points of early climate change impact, and organizes these along two main axes. First, it recognizes that climate change can act at a range of ecological scales. Secondly, it emphasizes that outcomes are dependent on two potentially interacting and countervailing forces: (1) changes to environmental parameters and ecological processes brought about by climate change, and (2) responses of component systems as determined by attributes of resistance and resilience. Through this structure, the framework draws together a broad range of ecological concepts, with a novel emphasis on attributes of resistance and resilience that can temper the response of species, ecosystems and landscapes to climate change. We applied the framework to the world’s largest remaining Mediterranean-climate woodland, the ‘Great Western Woodlands’ of south-western Australia. In this relatively intact region, maintaining inherent resistance and resilience by preventing anthropogenic degradation is of highest priority and lowest risk. Limited, higher risk options such as fire management, protection of refugia and translocation of adaptive genes may be justifiable under more extreme change, hence our capacity to predict the extent of change strongly impinges on such management decisions. These conclusions may contrast with similar analyses in degraded landscapes, where natural integrity is already compromised, and existing investment in restoration may facilitate experimentation with higher risk options
The genus Dracophyllum Labill. (Ericaceae) has a fragmented distribution in Australasia, but reaches the greatest level of species richness and morphological diversity in New Zealand. We investigated evolutionary processes that contribute to this disparity in species richness by comparing DNA sequences from members of Dracophyllum, its close relatives Richea Labill. and Sphenotoma R. Br. ex Sweet (together constituting tribe Richeeae Crayn & Quinn), along with more distant relatives in the Ericaceae. We created complementary data sets for the chloroplast-encoded genes matK and rbcL. Parsimony, Bayesian, and maximum likelihood analyses were conducted to assess the robustness of our phylogenetic inferences. The results were largely congruent and, when analyzed in combination, provided greater resolution. In our analyses, tribe Richeeae formed a monophyletic group that diverged during the Eocene (at least 33.3 million years ago [Ma]) with a crown radiation during the Early Miocene (at least 16.5 Ma) that resulted in two disjunct lineages. This date corresponds roughly to the onset of aridification in central Australia. The southern Western Australian genus Sphenotoma formed an isolated evolutionary lineage, while Dracophyllum and Richea together formed a second lineage restricted to eastern Australia, Lord Howe Island, New Caledonia, and New Zealand. The relationships of the Tasmanian endemic, D. milliganii Hook. f., remain an enigma. It was ambiguously placed as sister to Sphenotoma or to the Dracophyllum-Richea clade. We recovered two distinct lineages, traditionally recognized as Richea sect. Cystanthe (R. Br.) Benth. and Richea sect. Dracophylloides Benth., which were nested within Dracophyllum. The Lord Howe Island endemic, D. fitzgeraldii F. Muell., emerged as sister to an eastern Australian clade of Dracophyllum. Our evidence suggests that the New Caledonian and New Zealand species of Dracophyllum dispersed from Australia; we document two independent episodes of long-distance dispersal in the Late Miocene to Early Pliocene. Low levels of sequence divergence suggest a rapid and recent species radiation in these two island archipelagos largely within the last three to six million years. This radiation accompanied Pliocene uplift of the New Zealand Southern Alps and episodes of glaciation during the Pleistocene. Because Dracophyllum is paraphyletic and Richea is polyphyletic, the taxonomic circumscription of these genera requires revision.
No abstract
Lectotypes are selected for Andersonia R.Br (Ericaceae) and eight taxa within the genus: A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.