A pallial-basal-ganglia-thalamic-pallial loop in songbirds is involved in vocal motor learning. Damage to its basal ganglia part, Area X, in adult zebra finches has been noted to have no strong effects on song and its function is unclear. Here we report that neurotoxic damage to adult Area X induced changes in singing tempo and global syllable sequencing in all animals, and considerably increased syllable repetition in birds whose song motifs ended with minor repetitions before lesioning. This stuttering-like behavior started at one month, and improved over six months. Unexpectedly, the lesioned region showed considerable recovery, including immigration of newly generated or repaired neurons that became active during singing. The timing of the recovery and stuttering suggest that immature recovering activity of the circuit might be associated with stuttering. These findings indicate that even after juvenile learning is complete, the adult striatum plays a role in higher level organization of learned vocalizations.
Similar to human speech, bird song is controlled by several pathways including a cortico-basal ganglia-thalamo-cortical (C-BG-T-C) loop. Neurotoxic disengagement of the basal ganglia component, i.e. Area X, induces long-term changes in song performance, while most of the lesioned area regenerates within the first months. Importantly however, the timing and spatial extent of structural neuroplastic events potentially affecting other constituents of the C-BG-T-C loop is not clear. We designed a longitudinal MRI study where changes in brain structure were evaluated relative to the time after neurotoxic lesioning or to vocal performance. By acquiring both Diffusion Tensor Imaging and 3-dimensional anatomical scans, we were able to track alterations in respectively intrinsic tissue properties and local volume. Voxel-based statistical analyses revealed structural remodeling remote to the lesion, i.e. in the thalamus and, surprisingly, the cerebellum, both peaking within the first two months after lesioning Area X. Voxel-wise correlations between song performance and MRI parameters uncovered intriguing brain-behavior relationships in several brain areas pertaining to the C-BG-T-C loop supervising vocal motor control. Our results clearly point to structural neuroplasticity in the cerebellum induced by basal ganglia (striatal) damage and might point to the existence of a human-like cerebello-thalamic-basal ganglia pathway capable of modifying vocal motor output.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.