Stationary solutions for the 2+1 cubic nonlinear Schrödinger equation modeling Bose-Einstein condensates (BEC) in a small potential are obtained via a form of perturbation. In particular, perturbations due to small potentials which either confine or repel the BECs are studied, and under arbitrary piecewise continuous potentials, we obtain the general representation for the perturbation theory of radial BEC solutions. Numerical results are also provided for regimes where perturbative results break down (i.e., the large-potential regime). Both repulsive and attractive BECs are considered under this framework. Solutions for many specific confining potentials of physical relevance to experiments on BECs are provided in order to demonstrate the approach. We make several observations regarding the influence of the particular small potentials on the behavior of the BECs.
Stationary solutions for the 1+1 cubic nonlinear Schrödinger equation modeling repulsive Bose-Einstein condensates (BEC) in a small potential are obtained through a form of nonlinear perturbation. In particular, for sufficiently small potentials, we determine the perturbation theory of stationary solutions, by use of an expansion in Jacobi elliptic functions. This idea was explored before in order to obtain exact solutions [Bronski, Carr, Deconinck, and Kutz, Phys. Rev. Lett. 86, 1402 (2001)], where the potential itself was fixed to be a Jacobi elliptic function, thereby reducing the nonlinear ODE into an algebraic equation, (which could be easily solved). However, in the present paper, we outline the perturbation method for completely general potentials, assuming only that such potentials are locally small. We do not need to assume that the nonlinearity is small, as we perform a sort of nonlinear perturbation by allowing the zeroth-order perturbation term to be governed by a nonlinear equation. This allows us to consider even poorly behaved potentials, so long as they are bounded locally. We demonstrate the effectiveness of this approach by considering a number of specific potentials: for the simplest potentials, and we recover results from the literature, while for more complicated potentials, our results are new. Dark soliton solutions are constructed explicitly for some cases, and we obtain the known one-soliton tanh-type solution in the simplest setting for the repulsive BEC. Note that we limit our results to the repulsive case; similar results can be obtained for the attractive BEC case.
Stationary solutions for the 1+1 cubic nonlinear Schrödinger equation (NLS) modeling attractive Bose-Einstein condensates (BECs) in a small potential are obtained via a form of nonlinear perturbation. The focus here is on perturbations to the bright soliton solutions due to small potentials which either confine or repel the BECs: under arbitrary piecewise continuous potentials, we obtain the general representation for the perturbation theory of the bright solitons. Importantly, we do not need to assume that the nonlinearity is small, as we perform a sort of nonlinear perturbation by allowing the zeroth-order perturbation term to be governed by a nonlinear equation. This is useful, in that it allows us to consider perturbations of bright solitons of arbitrary size. In some cases, exact solutions can be recovered, and these agree with known results from the literature. Several special cases are considered which involve confining potentials of specific relevance to BECs. We make several observations on the influence of the small potentials on the behavior of the perturbed bright solitons. The results demonstrate the difference between perturbed bright solitons in the attractive NLS and those results found in the repulsive NLS for dark solitons, as discussed by Mallory and Van Gorder, [Phys. Rev. E 88 013205 (2013)]. Extension of these results to more spatial dimensions is mentioned.
Stationary solutions for the cubic nonlinear Schrödinger equation modeling Bose-Einstein condensates (BECs) confined in three spatial dimensions by general forms of a potential are studied through a perturbation method and also numerically. Note that we study both repulsive and attractive BECs under similar frameworks in order to deduce the effects of the potentials in each case. After outlining the general framework, solutions for a collection of specific confining potentials of physical relevance to experiments on BECs are provided in order to demonstrate the approach. We make several observations regarding the influence of the particular potentials on the behavior of the BECs in these cases, comparing and contrasting the qualitative behavior of the attractive and repulsive BECs for potentials of various strengths and forms. Finally, we consider the nonperturbative where the potential or the amplitude of the solutions is large, obtaining various qualitative results. When the kinetic energy term is small (relative to the nonlinearity and the confining potential), we recover the expected Thomas-Fermi approximation for the stationary solutions. Naturally, this also occurs in the large mass limit. Through all of these results, we are able to understand the qualitative behavior of spherical three-dimensional BECs in weak, intermediate, or strong confining potentials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.