The mosaic model of brain evolution postulates that different brain regions are relatively free to evolve independently from each other. Such independent evolution is possible only if genetic correlations among the different brain regions are less than unity. We estimated heritabilities, evolvabilities and genetic correlations of relative size of the brain, and its different regions in the three-spined stickleback (Gasterosteus aculeatus). We found that heritabilities were low (average h 2 ¼ 0.24), suggesting a large plastic component to brain architecture.However, evolvabilities of different brain parts were moderate, suggesting the presence of additive genetic variance to sustain a response to selection in the long term. Genetic correlations among different brain regions were low (average r G ¼ 0.40) and significantly less than unity. These results, along with those from analyses of phenotypic and genetic integration, indicate a high degree of independence between different brain regions, suggesting that responses to selection are unlikely to be severely constrained by genetic and phenotypic correlations. Hence, the results give strong support for the mosaic model of brain evolution. However, the genetic correlation between brain and body size was high (r G ¼ 0.89), suggesting a constraint for independent evolution of brain and body size in sticklebacks.
BackgroundPlasticity in brain size and the size of different brain regions during early ontogeny is known from many vertebrate taxa, but less is known about plasticity in the brains of adults. In contrast to mammals and birds, most parts of a fish’s brain continue to undergo neurogenesis throughout adulthood, making lifelong plasticity in brain size possible. We tested whether maturing adult three-spined sticklebacks (Gasterosteus aculeatus) reared in a stimulus-poor environment exhibited brain plasticity in response to environmental enrichment, and whether these responses were sex-specific, thus altering the degree of sexual size dimorphism in the brain.ResultsRelative sizes of total brain and bulbus olfactorius showed sex-specific responses to treatment: males developed larger brains but smaller bulbi olfactorii than females in the enriched treatment. Hence, the degree of sexual size dimorphism (SSD) in relative brain size and the relative size of the bulbus olfactorius was found to be environment-dependent. Furthermore, the enriched treatment induced development of smaller tecta optica in both sexes.ConclusionsThese results demonstrate that adult fish can alter the size of their brain (or brain regions) in response to environmental stimuli, and these responses can be sex-specific. Hence, the degree of SSD in brain size can be environment-dependent, and our results hint at the possibility of a large plastic component to SSD in stickleback brains. Apart from contributing to our understanding of the processes shaping and explaining variation in brain size and the size of different brain regions in the wild, the results show that provision of structural complexity in captive environments can influence brain development. Assuming that the observed plasticity influences fish behaviour, these findings may also have relevance for fish stocking, both for economical and conservational purposes.Electronic supplementary materialThe online version of this article (doi:10.1186/s12983-015-0130-0) contains supplementary material, which is available to authorized users.
Evidence for phenotypic plasticity in brain size and the size of different brain parts is widespread, but experimental investigations into this effect remain scarce and are usually conducted using individuals from a single population. As the costs and benefits of plasticity may differ among populations, the extent of brain plasticity may also differ from one population to another. In a common garden experiment conducted with three‐spined sticklebacks (Gasterosteus aculeatus) originating from four different populations, we investigated whether environmental enrichment (aquaria provided with structural complexity) caused an increase in the brain size or size of different brain parts compared to controls (bare aquaria). We found no evidence for a positive effect of environmental enrichment on brain size or size of different brain parts in either of the sexes in any of the populations. However, in all populations, males had larger brains than females, and the degree of sexual size dimorphism (SSD) in relative brain size ranged from 5.1 to 11.6% across the populations. Evidence was also found for genetically based differences in relative brain size among populations, as well as for plasticity in the size of different brain parts, as evidenced by consistent size differences among replicate blocks that differed in their temperature.
Populations are from time to time exposed to stressful temperatures. Their thermal resistance levels are determined by inherent and plastic mechanisms, which are both likely to be under selection in natural populations. Previous studies on Drosophila species have shown that inherent resistance is highly species specific, and differs among ecotypes (e.g., tropical and widespread species).Apart from being exposed to thermal stress many small and fragmented populations face genetic challenges due to, for example, inbreeding. Inbreeding has been shown to reduce inherent resistance levels toward stressful temperatures, but whether adaptation to thermal stress through plastic responses also is affected by inbreeding is so far not clear. In this study, we test inherent cold resistance and the ability to respond plastically to temperature changes through developmental cold acclimation in inbred and outbred lines of five tropical and five widespread Drosophila species. Our results confirm that tropical species have lower cold resistance compared to widespread species, and show that (1) inbreeding reduces inherent cold resistance in both tropical and widespread species, (2) inbreeding does not affect the ability to respond adaptively to temperature acclimation, and (3) tropical species with low basal resistance show stronger adaptive plastic responses to developmental acclimation compared to widespread species.
Extreme environments are inhospitable to the majority of species, but some organisms are able to survive in such hostile conditions due to evolutionary adaptations. For example, modern bony fishes have colonized various aquatic environments, including perpetually dark, hypoxic, hypersaline and toxic habitats. Eurasian perch (Perca fluviatilis) is among the few fish species of northern latitudes that is able to live in very acidic humic lakes. Such lakes represent almost “nocturnal” environments; they contain high levels of dissolved organic matter, which in addition to creating a challenging visual environment, also affects a large number of other habitat parameters and biotic interactions. To reveal the genomic targets of humic‐associated selection, we performed whole‐genome sequencing of perch originating from 16 humic and 16 clear‐water lakes in northern Europe. We identified over 800,000 single nucleotide polymorphisms, of which >10,000 were identified as potential candidates under selection (associated with >3000 genes) using multiple outlier approaches. Our findings suggest that adaptation to the humic environment may involve hundreds of regions scattered across the genome. Putative signals of adaptation were detected in genes and gene families with diverse functions, including organism development and ion transportation. The observed excess of variants under selection in regulatory regions highlights the importance of adaptive evolution via regulatory elements, rather than via protein sequence modification. Our study demonstrates the power of whole‐genome analysis to illuminate the multifaceted nature of humic adaptation and provides the foundation for further investigation of causal mutations underlying phenotypic traits of ecological and evolutionary importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.