Currently, the significantly developing fields of tissue engineering related to the fabrication of polymer-based materials that possess microenvironments suitable to provide cell attachment and promote cell differentiation and proliferation involve various materials and approaches. Biomimicking approach in tissue engineering is aimed at the development of a highly biocompatible and bioactive material that would most accurately imitate the structural features of the native extracellular matrix consisting of specially arranged fibrous constructions. For this reason, the present research is devoted to the discussion of promising fibrous materials for bone tissue regeneration obtained by electrospinning techniques. In this brief review, we focus on the recently presented natural and synthetic polymers, as well as their combinations with each other and with bioactive inorganic incorporations in order to form composite electrospun scaffolds. The application of several electrospinning techniques in relation to a number of polymers is touched upon. Additionally, the efficiency of nanofibrous composite materials intended for use in bone tissue engineering is discussed based on biological activity and physiochemical characteristics.
The development of electrospun nanofibers based on cellulose and its derivatives is an inalienable task of modern materials science branches related to biomedical engineering. The considerable compatibility with multiple cell lines and capability to form unaligned nanofibrous frameworks help reproduce the properties of natural extracellular matrix and ensure scaffold applications as cell carriers promoting substantial cell adhesion, growth, and proliferation. In this paper, we are focusing on the structural features of cellulose itself and electrospun cellulosic fibers, including fiber diameter, spacing, and alignment responsible for facilitated cell capture. The study emphasizes the role of the most frequently discussed cellulose derivatives (cellulose acetate, carboxymethylcellulose, hydroxypropyl cellulose, etc.) and composites in scaffolding and cell culturing. The key issues of the electrospinning technique in scaffold design and insufficient micromechanics assessment are discussed. Based on recent studies aiming at the fabrication of artificial 2D and 3D nanofiber matrices, the current research provides the applicability assessment of the scaffolds toward osteoblasts (hFOB line), fibroblastic (NIH/3T3, HDF, HFF-1, L929 lines), endothelial (HUVEC line), and several other cell types. Furthermore, a critical aspect of cell adhesion through the adsorption of proteins on the surfaces is touched upon.
Nanoscale powders of hydrated Ca2P2O7, CaCO3, and a product of mixed-anionic composition containing P2O74− and CO32− anions were synthesized from aqueous solutions of Ca(CH3COO)2, pyrophosphoric acid (H4P2O7), and/or (NH4)2CO3. Pyrophosphoric acid was previously obtained on the basis of the ion exchange process from Na4P2O7 solution and H+-cationite resin for further introduction into the reactions as an anionic precursor. The phase composition of powders after the syntheses was represented by bioresorbable phases of X-ray amorphous Ca2P2O7 phase, calcite and vaterite polymorphs of CaCO3. Based on synthesized powders, simple cylindrical constructions were prepared via mechanical pressing and fired in the temperature range of 600–800 °C. Surface morphology observation showed the presence of bimodal porosity with pore sizes up to 200 nm and 2 μm, which is likely to ensure tight particle packing and roughness of the sample surface required for the differentiation of osteogenic cells. Thus, the prepared ceramic samples can be further examined as model objects for bone tissue repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.