Waste remaining after the production of olive oil (olive pomace) is known to contain significant amounts of phenolic compounds that exert different types of biological activities, primarily acting as antioxidants. In this work, a sustainable approach that combines ultrasound-assisted extraction with food-grade solvents and encapsulation with different types of cyclodextrins was used to prepare olive pomace-based polyphenol rich extracts that were tested as antioxidants in various chemical, food, and biological model systems. Encapsulation with cyclodextrins had a significant positive impact on the chemical composition of obtained extracts and it positively affected their antioxidant activity. Observed effects can be explained by an increased content of polyphenols in the formulations, specific physical properties of encapsulated compounds improving their antioxidant activity in complex food/physiological environment, and enhanced interaction with natural substrates. Depending on the applied model, the tested samples showed significant antioxidant protection in the concentration range 0.1–3%. Among the investigated cyclodextrins, hydroxypropyl-β-cyclodextrin and randomly methylated-β-cyclodextrin encapsulated extracts showed particularly good antioxidant activity and were especially potent in oil-in-water emulsion systems (1242 mg/g and 1422 mg/g of Trolox equivalents, respectively), showing significantly higher antioxidant activity than Trolox (reference antioxidant). In other models, they provided antioxidant protection comparable to commonly used synthetic antioxidants at concentration levels of 2–3%.
Olive pomace is a rich source of biologically active compounds, mainly polyphenols. Recently, an efficient and sustainable cyclodextrin (CD)-enhanced extraction was developed. It enabled a relatively simple formulation of high-quality olive pomace extracts (OPEs) that can be used as alternative sources of olive-derived polyphenols in the nutrition and pharma industries. However, biological effects and nutraceutical potential of OPEs are primarily limited by generally low oral bioavailability of major polyphenols (hydroxytyrosol and its derivatives) that can be significantly influenced by OPE matrix and the presence of CDs in formulation. The major goal of this research was to investigate the impact of complex matrix and different types of CDs on gastrointestinal stability and intestinal permeability of major OPE polyphenols, and provide additional data about mechanisms of absorption and antioxidant activity in gut lumen. Obtained results showed high bioaccessibility but relatively low permeability of OPE polyphenols, which was negatively affected by OPE matrix. CDs improved antioxidant efficiency of tested OPEs and tyrosol gastrointestinal stability. Effects of CDs on permeability and the metabolism of particular OPE polyphenols were CD-and polyphenol-specific.Nutrients 2020, 12, 669 2 of 16 oxidative stress in the intestine is particularly important given that numerous studies have shown that oxidative stress is directly linked to the development of diseases of the GI tract, such as inflammatory bowel disease and tumor colon. The intestine is the site that was shown to be extremely susceptible to oxidative stress. Namely, lipid peroxidation (as a chain reaction that lead to deleterious cell membrane damage) can be initiated by dietary fats.Considering its phenolic composition, olive pomace is very similar to olive oil and represents an inexpensive and readily available source of HTS derivatives. In the last decade, the potential of the olive pomace as a rich source of biologically active compounds has been recognized in scientific and professional literature, resulting in the development of a large number of effective extraction procedures [6,7]. However, the poor technological properties of raw olive pomace extracts (OPE) limit their wider application as nutraceuticals and food additives [7]. The main prerequisites for obtaining usable OPE are high yield of HTS derivatives, stability, and satisfactory technological properties of dry extracts. In this regard, cyclodextrins (CDs) were successfully applied for achieving higher polyphenol yields and the formulation of stable and organoleptically acceptable olive pomace extracts (OPEs) [7]. Moreover, α-CD, β-CD, and γ-CD are listed on the generally regarded as safe (GRAS) list of the U.S. Food and Drug Administration (FDA) for use as a food additive [8][9][10].In addition to demonstrating favorable chemical composition and technological properties, the quality of OPE is significantly determined by bioavailability and biological activity of its main active components...
Olive pomace is a valuable secondary raw material rich in polyphenols, left behind after the production of olive oil. The present study investigated the protective effect of a polyphenolic extract from olive pomace (OPE) on cell viability and antioxidant defense of cultured human HepG2 cells submitted to oxidative stress induced by tert-butylhydroperoxide (tBOOH). The investigation considered possible matrix effects, impact of gastrointestinal digestion and cyclodextrin (CD) encapsulation. Pre-treatment of cells with OPE prevented cell damage and increased intracellular glutathione but did not affect the activity of glutathione peroxidase and superoxide dismutase. OPE matrix significantly enhanced cell protective effects of major antioxidants, such as hydroxytyrosol (HTS), while cyclodextrin encapsulation enhanced activity of OPE against intracellular reactive oxygen species (ROS) accumulation. The obtained results show that OPE is more potent antioxidant in comparison to equivalent dose of main polyphenols (HTS and TS) and that increasing solubility of OPE polyphenols by CD encapsulation or digestion enhances their potential to act as intracellular antioxidants. Antioxidative protection of cells by OPE was primarily achieved through direct radical-scavenging/reducing actions rather than activation of endogenous defense systems in the cell.
Background: olive pomace extract (OPE) is a rich source of health promoting polyphenols (hydroxytyrosol (HTS) and tyrosol (TS)) and can be used as a nutraceutical ingredient of dietary supplements and functional foods. Its adequate bioavailability is a prerequisite for excreting biological activity and can be significantly and specifically affected by different food matrices. Methods: in order to investigate food effects on polyphenol bioaccessibility, OPE was co-digested with different foods according to internationally harmonized in vitro digestibility method. Impact of particular nutrients on HTS and TS permeability was assessed on Caco-2 cell monolayer. Results: HTS and TS bioaccessibility and transepithelial permeability can be significantly affected by foods (nutrients), especially by casein and certain types of dietary fiber. Those effects are polyphenol-and nutrient-specific and are achieved either through complexation in gastrointestinal lumen and/or through direct effects of nutrients on intestinal monolayer. Conclusions: obtained results emphasize the significance and complexity of polyphenol interactions within the food matrix and the necessity of individual investigational approaches with respect to particular food/nutrient and interacting phenolic compounds.
Olive pomace extract (OPE) was investigated as a potential surface modifier for the development of the green synthesis process of selenium nanoparticles (SeNPs). In order to evaluate them as potential nutraceuticals, the obtained nanosystems were characterized in terms of size distribution, shape, zeta potential, stability in different media, gastrointestinal bioaccessibility and biocompatibility. Systems with a unimodal size distribution of spherical particles were obtained, with average diameters ranging from 53.3 nm to 181.7 nm, depending on the type of coating agent used and the presence of OPE in the reaction mixture. The nanosystems were significantly affected by the gastrointestinal conditions. Bioaccessibility ranged from 33.57% to 56.93% and it was significantly increased by functionalization of with OPE. Biocompatibility was investigated in the HepG2 and Caco2 cell models, proving that they had significantly lower toxicity in comparison to sodium selenite. Significant differences were observed in cellular responses depending on the type of cells used, indicating differences in the mechanisms of toxicity induced by SeNPs. The obtained results provide new insight into the possibilities for the utilization of valuable food-waste extracts in the sustainable development of nanonutraceuticals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.