Abstract:In this paper we use 20 Hz wind measurements on three levels (2, 5, and 10 m) to investigate the differences in micro-scale properties of different bora types, i.e., deep and shallow bora with further subdivision to cyclonic and anticyclonic bora cases. Using Fourier spectral analysis, we investigate a suitable turbulence averaging scale and bora gust pulsations. The obtained data set is further used to test the Monin-Obukhov similarity theory, the surface layer stratification, the behavior of the terms in the prognostic turbulence kinetic energy equation, and the wind profiles. One of our main goals is to identify possible micro-scale differences between shallow and deep bora types because of the possible different mountain wave dynamics in those flows. We found that a turbulence averaging scale of 30 min is suitable for this location and is in agreement with previous bora studies. The wind speed power spectral densities of all selected bora episodes showed pulsations with periods of 2-8 min. This suggests that mountain wave breaking was present in all cases, regardless of flow depth and synoptic type. The stability parameter analysis confirmed the near-neutral thermal stratification of bora; a consequence of intensive mechanical mixing. No significant differences related to bora type were observed in other micro-scale parameters.
Abstract. A simple 1-D energy budget model (SIMO) for the prediction of the vertical temperature profiles in small, monomictic lakes forced by a reduced number of input meteorological variables is proposed. The model estimates the net heat flux and thermal diffusion using only routinely measured hourly mean meteorological variables (namely, the air temperature, relative humidity, atmospheric pressure, wind speed, and precipitation), hourly mean ultraviolet B radiation (UVB), and climatological yearly mean temperature data. Except for the initial vertical temperature profile, the model does not use any lake-specific variables. The model performance was evaluated against lake temperatures measured continuously during an observational campaign in two lakes belonging to the Plitvice Lakes, Croatia (Lake 1 and Lake 12). Temperatures were measured at 15 and 16 depths ranging from 0.2 to 27 m in Lake 1 (maximum depth of 37.4 m) and 0.2 to 43 m in Lake 12 (maximum depth of 46 m). The model performance was evaluated for simulation lengths from 1 to 30 d. The model performed reasonably well, and it was able to satisfactorily reproduce the vertical temperature profile at the hourly scale, the deepening of the thermocline with time, and the annual variation in the vertical temperature profile, which shows its applicability for short-term prognostic simulations. A yearlong simulation initiated with an approximately constant vertical profile of the lake temperature (≈ 4 ∘C) was able to reproduce the onset of stratification and convective overturn. The epilimnion temperature was somewhat overestimated, especially with the onset of the convective overturn. The upper limit of the metalimnion was well captured, while its thickness was overestimated. Nevertheless, the values of the model performance measures obtained for a yearlong simulation were comparable with those reported for other, more complex models. Thus, the presented model can also be used for long-term simulations and the assessment of the onset and duration of lake stratification periods when water temperature data are unavailable, which can be useful for various lake studies performed in other scientific fields, such as biology, geochemistry, and sedimentology.
As delicate closed systems, lakes are extremely vulnerable to climate change. In this paper, we examine Lake Kozjak, Croatia, a small karstic, monomictic lake that belongs to the Plitvice Lake system. The Plitvice Lakes represent a special hydrogeological karstic phenomenon that is closely dependent on a delicate biochemical balance necessary for tufa formation. We apply a simple one-dimensional model for monomictic lakes, SIMO v.1.0, to predict the water temperature at Lake Kozjak in three future scenarios (RCP2.6, RCP4.5 and RCP8.5) for the period between 2006 and 2100. The model captures the seasonal stratification and deepening of the thermocline as well as convective mixing. The results show that the significant increase in the lake water temperature that is expected in the more pessimistic scenarios is not accompanied by significant stratification strengthening due to significant heating of not only the epilimnion but also the hypolimnion. However, significant lengthening of the stratification period is observed even for the most stringent scenario, RCP2.6.
Abstract. A simple 1-D energy budget model (SIMO) for the prediction of the vertical temperature profiles in small, monomictic lakes forced by a reduced number of input meteorological variables is proposed. The model estimates the net heat flux and thermal diffusion using only routinely measured hourly mean meteorological variables (namely, the air temperature, relative humidity, atmospheric pressure, wind speed, and precipitation), hourly mean ultraviolet B radiation (UVB), and climatological monthly mean cloudiness data. Except for the initial vertical temperature profile, the model does not use any lake-specific variables. The model performance was evaluated against lake temperatures measured continuously during an observational campaign in two lakes belonging to the Plitvice Lakes, Croatia (Lake 1 and Lake 12). Temperatures were measured at 15 and 16 depths ranging from 0.2 to 27 in Lake 1 (maximum depth of 37.4 m) and 0.2 to 43 m in Lake 12 (maximum depth of 46 m). A sensitivity analysis of the simulation length was performed for simulation lengths from 1 to 30 days. The model performed reasonably well and it was able to satisfactorily reproduce the vertical temperature profile at the hourly scale, the deepening of the thermocline with time, and the annual variation in the vertical temperature profile. A yearlong simulation initiated with an approximately constant vertical profile of the lake temperature (≈ 4 °C) was able to reproduce the onset of stratification and convective overturn. However, the thermocline depth was underestimated while the epilimnion temperatures were overestimated. Nevertheless, the values of the model performance measures obtained for a yearlong simulation were comparable with those reported for other more complex models. Thus, the presented model can be used for the assessment of the onset and duration of lake stratification periods when water temperature data are unavailable, which can be useful for various lake studies performed in other scientific fields, such as biology, geochemistry, and sedimentology.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.