Localization accuracy and acuity for low- (0.375-0.75 kHz; LN) and high-frequency (2.25-4.5 kHz; HN) noise bands were examined in young (20-29 years) and older adults (65-83 years) in the acoustic free-field. A pointing task was applied to quantify accuracy, while acuity was inferred from minimum audible angle (MAA) thresholds measured with an adaptive 3-alternative forced-choice procedure. Accuracy decreased with laterality and age. From young to older adults, the accuracy declined by up to 23 % for the low-frequency noise band across all lateralities. The mean age effect was even more pronounced on MAA thresholds. Thus, age was a strong predictor for MAA thresholds for both LN and HN bands. There was no significant correlation between hearing status and localization performance. These results suggest that central auditory processing of space declines with age and is mainly driven by age-related changes in the processing of binaural cues (interaural time difference and interaural intensity difference) and not directly induced by peripheral hearing loss. We conclude that the representation of the location of sound sources becomes blurred with age as a consequence of declined temporal processing, the effect of which becomes particularly evident for MAA thresholds, where two closely adjoining sound sources have to be separated. While localization accuracy and MAA were not correlated in older adults, only a weak correlation was found in young adults. These results point to an employment of different processing strategies for localization accuracy and acuity.
BackgroundHigh-voltage direct current (HVDC) lines are the technology of choice for the transport of large amounts of energy over long distances. The operation of these lines produces static electric fields (EF), but the data reviewed in previous assessments were not sufficient to assess the need for any environmental limit. The aim of this systematic review was to update the current state of research and to evaluate biological effects of static EF.MethodsUsing the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) recommendations, we collected and evaluated experimental and epidemiological studies examining biological effects of exposure to static EF in humans (n = 8) and vertebrates (n = 40).ResultsThere is good evidence that humans and animals are able to perceive the presence of static EF at sufficiently high levels. Hair movements caused by electrostatic forces may play a major role in this perception. A large number of studies reported responses of animals (e.g., altered metabolic, immunologic or developmental parameters) to a broad range of static EF strengths as well, but these responses are likely secondary physiological responses to sensory stimulation. Furthermore, the quality of many of the studies reporting physiological responses is poor, which raises concerns about confounding. ConclusionThe weight of the evidence from the literature reviewed did not indicate that static EF have adverse biological effects in humans or animals. The evidence strongly supported the role of superficial sensory stimulation of hair and skin as the basis for perception of the field, as well as reported indirect behavioral and physiological responses. Physical considerations also preclude any direct effect of static EF on internal physiology, and reports that some physiological processes are affected in minor ways may be explained by other factors. While this literature does not support a level of concern about biological effects of exposure to static EF, the conditions that affect thresholds for human detection and possible annoyance at suprathreshold levels should be investigated.Electronic supplementary materialThe online version of this article (doi:10.1186/s12940-017-0248-y) contains supplementary material, which is available to authorized users.
BackgroundHypersensitivity to electromagnetic fields (EMF) is a controversial condition. While individuals with idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) claim to experience health complaints upon EMF exposure, many experimental studies have found no convincing evidence for a physical relation. The aim of this systematic review was to evaluate methodological limitations in experimental studies on symptom development in IEI-EMF individuals that might have fostered false positive or false negative results. Furthermore, we compared the profiles of these limitations between studies with positive and negative results.MethodsThe Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guided the methodological conduct and reporting. Eligible were blinded experimental studies that exposed individuals with IEI-EMF to different EMF exposure levels and queried the development of symptoms during or after each exposure trial. Strengths and limitations in design, conduct and analysis of individual studies were assessed using a customized rating tool.ResultsTwenty-eight studies met the eligibility criteria and were included in this review. In many studies, both with positive and negative results, we identified methodological limitations that might have either fostered false or masked real effects of exposure. The most common limitations were related to the selection of study participants, the counterbalancing of the exposure sequence and the effectiveness of blinding. Many studies further lacked statistical power estimates. Methodically sound studies indicated that an effect of exposure is unlikely.ConclusionOverall, the evidence points towards no effect of exposure. If physical effects exist, previous findings suggest that they must be very weak or affect only few individuals with IEI-EMF. Given the evidence that the nocebo effect or medical/mental disorders may explain the symptoms in many individuals with IEI-EMF, additional research is required to identify the various factors that may be important for developing IEI-EMF and for provoking the symptoms. We recommend the identification of subgroups and exploring IEI-EMF in the context of other idiopathic environmental intolerances. If further experimental studies are conducted, they should preferably be performed at the individual level. In particular, to increase the likelihood of detecting hypersensitive individuals, if they exist, we encourage researchers to achieve a high credibility of the results by minimizing sources of risk of bias and imprecision.Electronic supplementary materialThe online version of this article (10.1186/s12940-019-0519-x) contains supplementary material, which is available to authorized users.
Electromagnetic fields (EMF) in the intermediate frequency (IF) range are generated by many novel electrical appliances, including electric vehicles, radiofrequency identification systems, induction hobs, or energy supply systems, such as wireless charging systems. The aim of this systematic review is to evaluate whether cardiovascular implantable electronic devices (CIEDs) are susceptible to electromagnetic interference (EMI) in the IF range (1 kHz-1 MHz). Additionally, we discuss the advantages and disadvantages of the different types of studies used to investigate EMI. Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement, we collected and evaluated studies examining EMI in in vivo studies, in vitro studies (phantom studies, benchmark tests), and simulation studies. Our analysis revealed that cardiac implants are susceptible to malfunction induced by EMF in the IF range. Electromagnetic interference may in particular be provoked by security systems and induction hobs. The results of the studies evaluated in this systematic review further indicate that the likelihood for EMI is dependent on exposure-related parameters (field strength, frequency, and modulation) and on implant- as well as on lead-related parameters (model, type of implant, implant sensitivity setting, lead configuration, and implantation site). The review shows that the factors influencing EMI are not sufficiently characterized and EMF limit values for CIED patients cannot be derived yet. Future studies should therefore, consider exposure-related parameters as well as implant- and lead-related parameters systematically. Additionally, worst-case scenarios should be considered in all study types where possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.