In recent years, a special type of cancer cell-the cancer stem cell (CSC)-has been identified and characterized for different tumors. CSCs may be responsible for the recurrence of a tumor following a primarily successful therapy and are thought to bear a high metastatic potential. For the development of efficient treatment strategies, the establishment of reliable methods for the identification and effective isolation of CSCs is imperative. Similar to their stem cell counterparts in bone marrow or small intestine, different cluster of differentiation surface antigens have been characterized, thus enabling researchers to identify them within the tumor bulk and to determine their degree of differentiation. In addition, functional properties characteristic of stem cells can be measured. Side population analysis is based on the stem cell-specific activity of certain ATP-binding cassette transporter proteins, which are able to transport fluorescent dyes out of the cells. Furthermore, the stem cell-specific presence of aldehyde dehydrogenase isoform 1 can be used for CSC labeling. However, the flow cytometric analysis of these CSC functional features requires specific technical adjustments. This review focuses on the principles and strategies of the flow cytometric analysis of CSCs and provides an overview of current protocols as well as technical requirements and pitfalls. A special focus is set on side population analysis and analysis of ALDH activity. Flow cytometrybased sorting principles and future flow cytometric applications for CSC analysis are also discussed. ' 2012 International Society for Advancement of Cytometry
Lacrimal gland (LG) insufficiency is a main cause for severe dry eye leading to pain, visual impairment, and eventually loss of sight. Engineering of transplantable LG tissue with secretory capacity is a desirable goal. In this study, a three-dimensional decellularized LG (DC-LG) scaffold with preserved LG morphology was generated by treatment with 1% sodium deoxycholate and DNase solution using porcine LG tissue. To address clinical applicability, the primary in vitro culture of secretory active LG cells from a small tissue biopsy of 1.5 mm diameter was introduced and compared with an established isolation method by enzymatic digestion. Cells from both isolation methods depicted an epithelial phenotype, maintained their secretory capacity for up to 30 days, and exhibited progenitor cell capacity as measured by aldehyde dehydrogenase-1 activity, side population assay, and colony-forming units. Cells from passage 0 were reseeded into the DC-LG and secretory active cells migrated into the tissue. The cells resembled an LG-like morphology and the constructs showed secretory activity. These results demonstrate the possibility of engineering a secretory competent, three-dimensional LG construct using LG cells expanded from a small tissue biopsy and DC-LG as a matrix that provides the native structure and physiological niche for these cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.