Single-cell methods are beginning to reveal the intrinsic heterogeneity in cell populations, arising from the interplay of deterministic and stochastic processes. However, it remains challenging to quantify single-cell behaviour from time-lapse microscopy data, owing to the difficulty of extracting reliable cell trajectories and lineage information over long time-scales and across several generations. Therefore, we developed a hybrid deep learning and Bayesian cell tracking approach to reconstruct lineage trees from live-cell microscopy data. We implemented a residual U-Net model coupled with a classification CNN to allow accurate instance segmentation of the cell nuclei. To track the cells over time and through cell divisions, we developed a Bayesian cell tracking methodology that uses input features from the images to enable the retrieval of multi-generational lineage information from a corpus of thousands of hours of live-cell imaging data. Using our approach, we extracted 20,000 + fully annotated single-cell trajectories from over 3,500 h of video footage, organised into multi-generational lineage trees spanning up to eight generations and fourth cousin distances. Benchmarking tests, including lineage tree reconstruction assessments, demonstrate that our approach yields high-fidelity results with our data, with minimal requirement for manual curation. To demonstrate the robustness of our minimally supervised cell tracking methodology, we retrieve cell cycle durations and their extended inter- and intra-generational family relationships in 5,000 + fully annotated cell lineages. We observe vanishing cycle duration correlations across ancestral relatives, yet reveal correlated cyclings between cells sharing the same generation in extended lineages. These findings expand the depth and breadth of investigated cell lineage relationships in approximately two orders of magnitude more data than in previous studies of cell cycle heritability, which were reliant on semi-manual lineage data analysis.
Single-cell methods are beginning to reveal the intrinsic heterogeneity in cell populations, which arises from the interplay or deterministic and stochastic processes. For example, the molecular mechanisms of cell cycle control are well characterised, yet the observed distribution of cell cycle durations in a population of cells is heterogenous. This variability may be governed either by stochastic processes, inherited in a deterministic fashion, or some combination of both. Previous studies have shown poor correlations within lineages when observing direct ancestral relationships but remain correlated with immediate relatives. However, assessing longer-range dependencies amid noisy data requires significantly more observations, and demands the development of automated procedures for lineage tree reconstruction. Here, we developed an open-source Python library, btrack, to facilitate retrieval of deep lineage information from live-cell imaging data. We acquired 3,500 hours of time-lapse microscopy data of epithelial cells in culture and used our software to extract 22,519 fully annotated single-cell trajectories. Benchmarking tests, including lineage tree reconstruction assessments, demonstrate that our approach yields high-fidelity results and achieves state-of-the-art performance without the requirement for manual curation of the tracker output data. To demonstrate the robustness of our supervision-free cell tracking pipeline, we retrieve cell cycle durations and their extended inter- and intra-generational family relationships, for up to eight generations, and up to fourth cousin relationships. The extracted lineage tree dataset represents approximately two orders of magnitude more data, and longer-range dependencies, than in previous studies of cell cycle heritability. Our results extend the range of observed correlations and suggest that strong heritable cell cycling is present. We envisage that our approach could be extended with additional live-cell reporters to provide a detailed quantitative characterisation of biochemical and mechanical origins to cycling heterogeneity in cell populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.