In general, the change point problem considers inference of a change in distribution for a set of time-ordered observations. This has applications in a large variety of fields, and can also apply to survival data. In survival analysis, most existing methods compare two treatment groups for the entirety of the study period. Some treatments may take a length of time to show effects in subjects. This has been called the time-lag effect in the literature, and in cases where time-lag effect is considerable, such methods may not be appropriate to detect significant differences between two groups. In this paper, we propose a novel non-parametric approach for estimating the point of treatment time-lag effect by using an empirical divergence measure. Theoretical properties of the estimator are studied. The results from the simulated data and the applications to real data examples support our proposed method.
With improvements to cancer diagnoses and treatments, incidences and mortality rates have changed. However, the most commonly used analysis methods do not account for such distributional changes. In survival analysis, change point problems can concern a shift in a distribution for a set of time‐ordered observations, potentially under censoring or truncation. We propose a sequential testing approach for detecting multiple change points in the Weibull accelerated failure time model, since this is sufficiently flexible to accommodate increasing, decreasing, or constant hazard rates and is also the only continuous distribution for which the accelerated failure time model can be reparameterized as a proportional hazards model. Our sequential testing procedure does not require the number of change points to be known; this information is instead inferred from the data. We conduct a simulation study to show that the method accurately detects change points and estimates the model. The numerical results along with real data applications demonstrate that our proposed method can detect change points in the hazard rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.