It has been hypothesized that the brain optimizes its capacity for computation by self-organizing to a critical point. The dynamical state of criticality is achieved by striking a balance such that activity can effectively spread through the network without overwhelming it and is commonly identified in neuronal networks by observing the behavior of cascades of network activity termed “neuronal avalanches.” The dynamic activity that occurs in neuronal networks is closely intertwined with how the elements of the network are connected and how they influence each other's functional activity. In this review, we highlight how studying criticality with a broad perspective that integrates concepts from physics, experimental and theoretical neuroscience, and computer science can provide a greater understanding of the mechanisms that drive networks to criticality and how their disruption may manifest in different disorders. First, integrating graph theory into experimental studies on criticality, as is becoming more common in theoretical and modeling studies, would provide insight into the kinds of network structures that support criticality in networks of biological neurons. Furthermore, plasticity mechanisms play a crucial role in shaping these neural structures, both in terms of homeostatic maintenance and learning. Both network structures and plasticity have been studied fairly extensively in theoretical models, but much work remains to bridge the gap between theoretical and experimental findings. Finally, information theoretical approaches can tie in more concrete evidence of a network's computational capabilities. Approaching neural dynamics with all these facets in mind has the potential to provide a greater understanding of what goes wrong in neural disorders. Criticality analysis therefore holds potential to identify disruptions to healthy dynamics, granted that robust methods and approaches are considered.
A patterned spread of proteinopathy represents a common characteristic of many neurodegenerative diseases. In Parkinson's disease (PD), misfolded forms of alpha-synuclein proteins accumulate in hallmark pathological inclusions termed Lewy bodies and Lewy neurites. Such protein aggregates seem to affect selectively vulnerable neuronal populations in the substantia nigra and to propagate within interconnected neuronal networks. Research findings suggest that these proteinopathic inclusions are present at very early timepoints in disease development, even before clear behavioural symptoms of dysfunction arise. In this study we investigate the early pathophysiology developing after induced formation of such PD-related alpha-synuclein inclusions, in a physiologically relevant in vitro setup using engineered human neural networks. We monitor the neural network activity using multielectrode arrays (MEAs) for a period of three weeks following proteinopathy induction to identify associated changes in network function, with a special emphasis on the measure of network criticality. Self-organised criticality represents the critical point between resilience against perturbation and adaptational flexibility, which appears to be a functional trait in self-organising neural networks, both in vitro and in vivo. We show that although developing pathology at early onset is not clearly manifest in standard measurements of network function, it may be discerned by investigating differences in network criticality states.
In this work, we report the preliminary analysis of the electrophysiological behavior of in vitro neuronal networks to identify when the networks are in a critical state based on the size distribution of network-wide avalanches of activity. The results presented here demonstrate the importance of selecting appropriate parameters in the evaluation of the size distribution and indicate that it is possible to perturb networks showing highly synchronized-or supercritical-behavior into the critical state by increasing the level of inhibition in the network. The classification of critical versus non-critical networks is valuable in identifying networks that can be expected to perform well on computational tasks, as criticality is widely considered to be the state in which a system is best suited for computation. This type of analysis is expected to enable the identification of networks that are well-suited for computation and the classification of networks as perturbed or healthy. This study is part of a larger research project, the overarching aim of which is to develop computational models that are able to reproduce target behaviors observed in in vitro neuronal networks. These models will ultimately be used to aid in the realization of these behaviors in nanomagnet arrays to be used in novel computing hardwares.
Understanding neuronal communication is fundamental in neuroscience, but there are few methodologies offering detailed analysis for well-controlled conditions. By interfacing microElectrode arrays with microFluidics (μEF devices), it is possible to compartmentalize neuronal cultures with a specified alignment of axons and microelectrodes. This setup allows the extracellular recording of spike propagation with a high signal-to-noise ratio over the course of several weeks. Addressing these μEF devices, we developed an advanced yet easy-to-use publically available computational tool, μSpikeHunter, which provides a detailed quantification of several communication-related properties such as propagation velocity, conduction failure, spike timings, and coding mechanisms. The combination of μEF devices and μSpikeHunter can be used in the context of standard neuronal cultures or with co-culture configurations where, for example, communication between sensory neurons and other cell types is monitored and assessed. The ability to analyze axonal signals (in a user-friendly, time-efficient, high-throughput manner) opens the door to new approaches in studies of peripheral innervation, neural coding, and neuroregeneration, among many others. We demonstrate the use of μSpikeHunter in dorsal root ganglion neurons where we analyze the presence of both anterograde and retrograde signals in μEF devices. A fully functional version of µSpikeHunter is publically available for download from https://github.com/uSpikeHunter .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.