In the setting of normal kidney function, iron deficiency is associated with increased FGF23 production and cleavage, altering circulating FGF23 levels. Our objective was to determine how chronic kidney disease (CKD) and dietary iron intake affect FGF23 production and metabolism in wild-type (WT) and hepcidin knockout (HKO) mice. For 8 wk, the mice were fed diets that contained adenine (to induce CKD) or no adenine (control group), with either low-iron (4 ppm) or standard-iron (335 ppm) concentrations. The low-iron diet induced iron deficiency anemia in both the WT and HKO mice. Among the WT mice, in both the control and CKD groups, a low-iron compared with a standard-iron diet increased bone Fgf23 mRNA expression, C-terminal FGF23 (cFGF23) levels, and FGF23 cleavage as manifested by a lower percentage intact FGF23 (iFGF23). Independent of iron status, CKD was associated with inhibition of FGF23 cleavage. Similar results were observed in the HKO control and CKD groups. Dietary iron content was more influential on FGF23 parameters than the presence or absence of hepcidin. In the CKD mice (WT and HKO, total n = 42), independent of the effects of serum phosphate, iron deficiency was associated with increased FGF23 production but also greater cleavage, whereas worse kidney function was associated with increased FGF23 production but decreased cleavage. Therefore, in both the WT and HKO mouse models, dietary iron content and CKD affected FGF23 production and metabolism.
Minihepcidins are small peptides that mimic biological activity of the iron-regulatory hormone hepcidin. Structurally, they contain thiol-free-cysteine residue in position 7 which is crucial for their bioactivity. Nonetheless, free sulfhydryl group is not desirable in pharmaceutical entities as it may lead to dermatological side effects. Moreover free thiol moiety is quite reactive and depending on conditions/reagents may be alkylated and/or oxidized giving various Cys-derivatives: S-alkyl cysteines, sulfoxides, sulfones, disulfides, cysteinesulfinic and cysteic acids. To limit such reactivity and maintain bioactivity of minihepcidin(s) we used thiol-protection strategy based on activated vinyl thioethers. Novel S-protected analogs of physiologically active minihepcidin PR73 were synthesized and tested in vitro showing activity comparable to parental molecule. The most active compound, PR73SH was also tested in vivo showing activity profile analogous to PR73. Collectively, our findings suggest that S-vinyl-derivatization of minihepcidin(s) may be a suitable approach in the development of physiologically active agonists of hepcidin.
Iron disorders are associated with adverse pregnancy outcomes, yet iron homeostatic mechanisms during pregnancy are poorly understood. In humans and rodents, the iron-regulatory hormone hepcidin is profoundly decreased in pregnant mothers, which is thought to ensure adequate iron availability for transfer across placenta. However, the fetal liver also produces hepcidin, which may regulate fetal iron endowment by controlling placental iron export. To determine the relative contribution of maternal vs embryo hepcidin to the control of embryo iron endowment in iron-sufficient or iron-overloaded mice, we generated combinations of mothers and embryos that had or lacked hepcidin. We found that maternal, but not embryonic hepcidin determined embryo and placental iron endowment in a healthy pregnancy. We further determined that inflammation can counteract pregnancy-dependent suppression of maternal hepcidin. To establish how essential maternal hepcidin suppression is for embryo iron homeostasis, we mimicked the range of maternal hepcidin activity by administering a hepcidin peptide mimetic to pregnant mice. This also allowed us to determine the effect of isolated maternal hepcidin excess on pregnancy, in the absence of other confounding effects of inflammation. Higher doses of hepcidin agonist caused maternal iron restriction and anemia, lower placenta and embryo weight, embryo anemia, and increased embryo mortality. Low agonist doses did not cause maternal anemia but still adversely affected the embryo, causing anemia, tissue iron deficiency including in the brain, and decreased weight. Our studies demonstrate that suppression of maternal hepcidin during pregnancy is essential for maternal and embryo iron homeostasis and health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.