Iron deficiency is a common cause of reactive thrombocytosis, however, the exact pathways have not been revealed. Here we aimed to study the mechanisms behind iron deficiency‐induced thrombocytosis. Within few weeks, iron‐depleted diet caused iron deficiency in young Sprague–Dawley rats, as reflected by a drop in hemoglobin, mean corpuscular volume, hepatic iron content and hepcidin mRNA in the liver. Thrombocytosis established in parallel. Moreover, platelets produced in iron deficient animals displayed a higher mean platelet volume and increased aggregation. Bone marrow studies revealed subtle alterations that are suggestive of expansion of megakaryocyte progenitors, an increase in megakaryocyte ploidy and accelerated megakaryocyte differentiation. Iron deficiency did not alter the production of hematopoietic growth factors such as thrombopoietin, interleukin 6 or interleukin 11. Megakaryocytic cell lines grown in iron‐depleted conditions exhibited reduced proliferation but increased ploidy and cell size. Our data suggest that iron deficiency increases megakaryopoietic differentiation and alters platelet phenotype without changes in megakaryocyte growth factors, specifically TPO. Iron deficiency‐induced thrombocytosis may have evolved to maintain or increase the coagulation capacity in conditions with chronic bleeding. Am. J. Hematol. 89:524–529, 2014. © 2014 Wiley Periodicals, Inc.
Disruption of mucosal structure and barrier function contribute to the pathogenesis of inflammatory bowel disease (IBD). Efficacy of therapy in IBD is based on endoscopic mucosal healing, which occurs by a dynamic interplay of epithelial cell regeneration, migration and differentiation. Both mesalamine (5-ASA) and azathioprine (AZTP) promote this process through mechanisms not clearly understood. We examined molecular pathways implicated in epithelial barrier function that were altered by 5-ASA and AZTP. Paracellular permeability induced by inflammatory mediators was mitigated by both compounds through restoration of cellular anchoring complexes. 5-ASA and AZTP induced rearrangement and membranous localization of junctional proteins and modulated genes involved in tight junctions. Intestinal organoids from wildtype-mice treated with TNF-α and IL-10- deficient-mice displayed impaired epithelial barrier with loss of membranous E-cadherin and reduced Desmoglein-2 expression. These effects were counteracted by 5-ASA and AZTP. Unlike AZTP that exhibited antiproliferative effects, 5-ASA promoted wound healing in colon epithelial cells. Both affected cellular senescence, cell cycle distribution and restricted cells in G1 or S phase without inducing apoptosis. This study provides mechanistic evidence that molecular actions of 5-ASA and AZTP on intestinal epithelia are fundamental in the resolution of barrier dysfunction.
Inflammatory bowel disease (IBD) is a group of chronic relapsing inflammatory disorders affecting the large and small intestine, with a rising worldwide incidence and prevalence. Anaemia is the most common extraintestinal manifestation of IBD, correlating with disease activity, and tending to relapse even after successful therapy. Iron deficiency is the most common cause; however, it often manifests in combination with anaemia of inflammation. As such, multiple parameters are used for the diagnosis of iron deficiency anaemia in IBD. Timely recognition and selection of appropriate therapy leads to an improvement in the quality of life and prevention of potential sequelae. Oral iron can be effective under specific circumstances; however, as luminal iron changes microbiota and bacterial metabolism, oral administration should be avoided. Intravenous iron is preferred as it bypasses the sites of inflammation. Nevertheless, the optimization of IBD treatment should occur simultaneously, as this improves both patient condition and response to iron therapy. Herein, we discuss the screening, diagnosis, selection of therapy, and follow-up for iron deficiency anaemia in IBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.