Drug resistance in cancer is often linked to changes in tumor cell state or lineage, but the molecular mechanisms driving this plasticity remain unclear. Using murine organoid and genetically engineered mouse models, we investigated the causes of lineage plasticity in prostate cancer and its relationship to antiandrogen resistance. We found that plasticity initiates in an epithelial population defined by mixed luminal-basal phenotype and that it depends on elevated JAK and FGFR activity. Organoid cultures from patients with castration-resistant disease harboring mixed-lineage cells reproduce the dependency observed in mice, by upregulating luminal gene expression upon JAK and FGFR inhibitor treatment. Single-cell analysis confirms the presence of mixed lineage cells with elevated JAK/STAT and FGFR signaling in a subset of patients with metastatic disease, with implications for stratifying patients for clinical trials.
Prostate cancer (PCa) is the most widely diagnosed male cancer in the Western World and while low- and intermediate-risk PCa patients have a variety of treatment options, metastatic patients are limited to androgen deprivation therapy (ADT). This treatment paradigm has been in place for 75 years due to the unique role of androgens in promoting growth of prostatic epithelial cells via the transcription factor androgen receptor (AR) and downstream signaling pathways. Within 2 to 3 years of ADT, disease recurs—at which time, patients are considered to have castration-recurrent PCa (CR-PCa). A universal mechanism by which PCa becomes resistant to ADT has yet to be discovered. In this review article, we discuss underlying molecular mechanisms by which PCa evades ADT. Several major resistance pathways center on androgen signaling, including intratumoral and adrenal androgen production, AR-overexpression and amplification, expression of AR mutants, and constitutively-active AR splice variants. Other ADT resistance mechanisms, including activation of glucocorticoid receptor and impairment of DNA repair pathways are also discussed. New therapies have been approved for treatment of CR-PCa, but increase median survival by only 2-8 months. We discuss possible mechanisms of resistance to these new ADT agents. Finally, the practicality of the application of “precision oncology” to this continuing challenge of therapy resistance in metastatic or CR-PCa is examined. Empirical validation and clinical-based evidence are definitely needed to prove the superiority of “precision” treatment in providing a more targeted approach and curative therapies over the existing practices that are based on biological “cause-and-effect” relationship.
Therapeutic interventions for advanced prostate cancer (PCa) center on inhibiting androgen receptor (AR) and downstream signaling pathways. Resistance to androgen deprivation therapy and/or AR antagonists is inevitable and molecular mechanisms driving castration-resistant PCa (CR-PCa) primarily involve alterations in AR expression and activity. Detailed molecular biology work over the past decade, discussed at length in this review article, has revealed several AR transcripts that result from alternative splicing. These AR splice variants are increased in cell and mouse models of CR-PCa and in CR-PCa tumors. Several AR variants lack the ligand binding domain, but retain their ability to bind DNA and activate transcriptionlinking constitutive AR function and therapeutic failure. ARV7 is the only variant endogenously detected at the protein level and thus has undergone more thorough molecular characterization. Clinical trials in PCa are currently investigating ARV7 utility as a biomarker and new therapeutics that inhibit ARV7 . Overall, this review will illustrate the historical perspectives of AR splice variant discovery using fundamental molecular biology techniques and how it changed the clinical approach to both therapeutic decisions and strategy. The body of work investigating AR splice variants in PCa represents a true example of translational research from bench to bedside.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.